KEYWORDS: Polymers, Line width roughness, Lithography, Electroluminescence, Deep ultraviolet, Photoresist processing, Photomasks, Scanning electron microscopy, Temperature metrology, Chemically amplified resists
In DUV CAR resists, deprotecting reaction and dissolution behavior depend upon the bulkiness and activation energy of protecting group. These factors have influences on resist performance (resolution, focus and exposure latitude margin, line width roughness). For further understanding this behavior, we investigated the dissolution parameters of resist related to the bulkiness, activation energy of protecting group, and we confirmed their effects on the resist performance using lithography evaluation. We will report and discuss the effect of structure and chemical properties of each protecting group on the dissolution behavior of resist in detail in this paper.
Recently, KrF lithography has extended to 100nm technical node using various techniques and pushed ArF lithography to sub-100nm application. To enhance resolution, there are many problems to be solved, like dark erosion (dark film loss), sloped profile, line edge roughness (LER), and so on. Also, thin resist film must be used to prevent pattern collapse. In general, the aspect ratio is less than 2.5 for sub 100nm. For this reason, chemically amplified resist has to get high etch resistance, low dark film loss and vertical profile shape at maximum resolution. Many efforts have been made to solve these problems and to improve resist performance. In this study, we tried to resolve some of these problems using various acid-quenching systems. We estimated the quencher ability using acid diffusion depth in resist film by sandwich method and pKb values of amines. The changes of lithographic properties according to the application of different amines were investigated. It was found that acid-quenching ability of an amine was not related to its basicity from sandwich experiment results. In fact, quenching efficiency was more closely related to the amine molecular structure and bulkiness of a substituent attached to nitrogen atom. We observed that pattern shape and process margin were not directly related to the basicity of an amine, but more related to quenching efficiency. The amines having higher quenching ability show wider process margin. However, other lithographic properties such as LER and dark erosion were not affected by acid-quenching ability. It is believed that they are determined by other components including polymer, protection groups, and PAGs.
We prepared ter-polymer of hydroxystyrene, tert-butyl acrylate and 4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene) (P(HS-TBA-CBPS)) and discussed a characteristic of prepared polymer. As TBA, newly introduced monomer increases, contrast of resist is improved. And the prepared polymer was blended with poly(4-hydroxystyrene-co-4-(1-ethylethoxystyrene)) (EE-PHS). The synergic effect on a resist performance in KrF lithography by the combination of high and low activation energy system was shown. A resist using blending polymer was shown a good performance on resolution and LER(Line Edge Roughness) than resist using polymer separately. Based on the results, it was found that high performance KrF resist could be obtained by optimization of polymer blending.
Various derivatives of modified poly(4-hydoxystyrene-co-4-(1-ethylethoxystyrene))(M-EEPHS) were synthesized by insertion of third monomer unit such as styrene, 4-acetoxystyrene, 4-methoxycarbonyloxystyrene, tertbutoxycarbonyloxystyrene, tert-butyl acrylate, and 4-(1-cyclohexylethoxy)styrene. Their dissolution rate behavior was investigated with different blocking level. From the average dissolution rate of M-EEPHS in a 2.38wt% TMAH solution as a function of the total protection%, hydrophobicity was proven as more influential factor for the dissolution inhibition rather than hydrogen bonding by ester or carbonate functionality in a blocking group. To study structural effect on KRF lithographic performance, resists containing M-EEPHS were formulated and testified. Defects that are found in EEPHS based resist, such as LER (Line Edge Roughness) and top surface erosion at defocus can be solved by incorporation of carbornate, bulky acetal functionality or dissolution inhibition group. When hybrid system, which contained both M-EEPHS and poly[4-hydroxystyrene-co-tert-butyl acrylate-co-4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene)](P(HS-TBA-CBPS)) as an annealing type resin, were compared with the lithographic results of single polymeric system (M-EEPHS only), their performances were directly projected to those of blends of high activation type and low activation type resin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.