Future robot skin will consist of massive numbers of sensors embedded in flexible and compliant elastomer substrate. To test and characterize pressure-sensitive skin prototypes, we have built an experimental testbed capable of applying controlled loading profiles, using the data to create reduced-order models of skin sensors for simulation and control. Measurement data from a load applicator and embedded taxel is acquired using National Instruments real-time control technology. Reduced-order models were proposed to relate the load applied to robot skin to the load sensed by the embedded taxel. Experiments for soft skin material characterization and taxel characterization were also undertaken with the testbed to better understand their nonlinear behavior. With this setup current and future skin sensor designs undergoing a range of loading profiles can be tested and modeled.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.