We have designed and synthesized a molecular resist material, which has no distribution of the protecting
groups and have evaluated its performance as a molecular resist with EB and EUV exposure tool. The molecular resist
attained a resolution of sub-45 nm patterning at an exposure dose of 12 mJ/cm2. It was found that controlling the
distribution of the protecting groups in a molecular resist material has a great impact on improving Line Edge
Roughness (LER). Low LER values of 3.1 nm (inspection length: L = 620 nm) and 3.6 nm (L = 2000 nm) were
achieved with this molecular resist using Extreme UltraViolet (EUV) lithography tool.
In order to enable design of a negative-tone polyphenol resist using polarity-change reaction, five resist
compounds (3M6C-MBSA-BLs) with different number of functional group of &ggr;-hydroxycarboxyl acid were prepared
and evaluated by EB lithography. The resist using mono-protected compound (3M6C-MBSA-BL1a) showed 40-nm hp
resolution at an improved dose of 52 &mgr;C/cm2 probably due to removal of a non-protected polyphenol while the
sensitivity of the resist using a compound of protected ratio of 1.1 on average with distribution of different protected
ratio was 72 &mgr;C/cm2. For evaluation of the di-protected compound based resist, a di-protected polyphenol was
synthesized by a newly developed synthetic route of 3-steps reaction, which is well-suited for mass production. The
resist using di-protected compound (3M6C-MBSA-BL2b) also showed 40-nm hp resolution at a dose of 40 &mgr;C/cm2,
which was faster than that of mono-protected resist. Fundamental EUV lithographic evaluation of the resist using
3M6C-MBSA-BL2b by an EUV open frame exposure tool (EUVES-7000) gave its estimated optimum sensitivity of 7
mJ/cm2 and a proof of fine development behavior without any swelling.
We designed a novel chemically-amplified negative-tone molecular-resist compound of 3M6C-MBSA-BL, which is a γ-hydroxycarboxylated polyphenol (4,4'-methylenebis[2-[di(2-methyl-4-hydroxy-5-cyclohexylphenyl)] methyl]phenol (3M6C-MBSA)) for EB and EUV lithographies to be used in hp 45 and beyond technology nodes. After selection of photo acid generators (PAGs) and optimization of the concentration of PAG in the resist, we could demonstrate 40-nm line and space patterns resolution by EB exposure. Also dry-etching durability and 1-month shelf life at -20oC were confirmed. Small line-edge roughness (LER) values of 4.5 nm (inspection length: L = 620 nm) and 6.2 nm (L = 1800 nm) were achieved using the 3M6C-MBSA-BL resist.
We have designed and synthesized cholate derivatives (1,4-Bis(methyloxymethylcholate)cyclohexane: C2ChDM and 1,2-Bis(oxymethylcholate)ethane: C2E) to investigate the properties as a chemically amplified (CA) positive-tone Electron-beam (EB) resist material. C2ChDM and C2E which were easily obtained by one-step esterification from cholic acid and dichloride showed glass transition temperatures (Tgs), 85 and 84oC, respectively. These compounds were dissolved in propylene glycol monomethyl ether acetate (PGMEA) and formed amorphous thin films onto silicon wafers by using a spin-coat method. The etch rates of C2ChDM and C2E, which were measured under CF4/CHF3/Ar mixed gas process, were almost the same as poly (p-hydroxystyrene) (PHS). The model resist samples were formulated with C2ChDM and C2E as base matrix and photo-acid generator (PAG) originated from sulfonium-salt (resist-A and B, respectively). These resists showed good sensitivities with EB exposure. Furthermore, the FT-IR spectra of resist-A and B films unexposed and exposed by the EB lithography tool were measured. From the spectral changes of resist-A and B films, we confirmed that a cleavage reaction of ester bond occurred by EB irradiation and bake treatment, and these resists worked as common CA positive-tone resist. The evaluation results with the resist-A and B by using EB exposure tool indicated the resolution of 120 nm lines and spaces pattern.
A multi-information-layer optical disk system using electrochromism for layer selection has been proposed and studied. Promising advantages of the disk are in its large capacity, high sensitivity in recording, and relative simplicity regarding hardware. PEDOT, a polythiophene derivative was selected as an electrochromic material. As a result of our fundamental investigation, DVD-like write/read has been achieved using DVD-RAM disk substrates and optics as DVD on a colored layer.
Acid-catalyzed intramolecular dehydration of phenylcarbinol is used to design highly sensitive negative resists for electron beam lithography. Of the phenylcarbinol resists evaluated in this study, the resist composed of 1,3-bis(alpha-hydroxyisopropyl)benzene (Diol-1), m/p-cresol novolak resin, and diphenyliodonium triflate (DIT) shows the best lithographic performance in terms of sensitivity and resolution. Fine 0.25-micrometer line-and-space patterns were formed by using the resist containing Diol-1 with a dose of 3.6 (mu) C/cm2 in conjunction with a 50 kV electron beam exposure system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.