In this paper we focus on the status and development of critical detector and cooler technology in support of our instrument concept for a Geosynchronous orbiting Nadir Etalon Sounding Spectrometer (GeoNESS) for temperature, moisture and trace species. The concept is a technology derivative of the Cryogenic Limb Array Etalon Spectrometer (CLAES) which is deployed on the NASA Upper Atmospheric Research Satellite (UARS).
The CLAES is calibrated with a full-aperture blackbody on the instrument-aperture door. In laboratory calibration, the blackbody is resistively heated. On orbit, the blackbody is intended to be heated by exposure to radiation from the earth while the door is open; calibration data are then taken at several temperatures after closing the door, as the blackbody cools to the temperature of the instrument's cryogenic telescope. An analysis of radiometric calibration-source accuracy is shown, indicating a nominal value of 2.7 percent at 12.63 microns. Preliminary analysis of calibration data indicates a measurement repeatability of about 1.25 percent. Details of the blackbody design, construction, and thermal instrumentation are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.