The state-of-charge (SOC) of Li-ion batteries is an important parameter for regulating and ensuring the safety of batteries, especially for Electric Vehicle applications, where accurate SOC estimation is important for remaining driving range prediction. The SOC is conventionally obtained through different indirect measurement methods that are either impractical or inaccurate. Data-driven approaches for SOC estimation are becoming more popular as an alternative to the conventional estimation methods due to their accuracy and low complexity. In this work, we apply 4 machine learning algorithms: Multiple Linear Regression (MLR), Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Random Forest (RF) to predict the SOC using voltage, current, and temperature measurements from mixed driving cycles datasets, with 50000 instances. Out of the 4 models, the Random forest model performed the best with an MAE of only 0.82%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.