Nanometer-thick multilayer structures, characterized by contrasts in elastic properties, present promising avenues for engineering and manipulating acoustic phonons at the nanoscale. Semiconductor nano-acoustic cavities, particularly those based on Distributed Bragg Reflectors (DBRs), have demonstrated unique capabilities in simultaneously confining light and acoustic phonons. This dual confinement enhances the generation and detection phononic fields, making these structures attractive for ultra-high-frequency applications and as platforms for simulating solid-state systems. In this study, we further explore the possibilities of hybrid nanostructures that could be both tunable and responsive to ultrafast changes in elastic properties induced by external stimuli such as temperature, humidity, and electrical fields. Building upon our theoretical simulations, our experimental investigation focuses on the dynamics of acoustic phonons spanning the frequency range of 5-500 GHz, utilizing near-infrared pump and probe ultrafast transient reflectivity experiments. The materials under investigation include mesoporous SiO2/TiO2 multilayers with a Nickel transducer, GaAs/AlAs DBR incorporating mesoporous SiO2 as an open cavity layer, YBCO/STO multilayers, and other potential responsive materials. Our long-term objective is to uncover the interplay between these nanostructures and external stimuli through systematic experimentation, shedding light on their tunability and responsiveness. Our experimental findings pave the way for developing nanoacoustic sensing technologies and reconfigurable optoacoustic nanodevices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.