We report a study on solar cells using pentacene derivatives with triisopropylsilylethynyl substitution at the
6,13-position and 1,3-dioxolane substitution to the terminal benzenoid rings of pentacene as the electron donor and C60 as the electron acceptor. A significant increase in the open circuit voltage (Voc) was obtained in all the
pentacene-derivative
based cells with the highest Voc as high as 0.90 V, compared to a 0.24 V value for pentacene. The variation in the Voc of
the cells is in qualitative agreement with the larger offset between ionization potential of the electron donor and the
electron affinity of C60. The power conversion efficiency (η) at 100 mW/cm2 of EtTP-5/C60 cells reached 0.74%, which
is comparable to that of a pentacene/C60 cell (0.82%).
KEYWORDS: Energy transfer, Luminescence, Molecules, Excitons, Solids, Molecular energy transfer, Diffusion, Quantum efficiency, Composites, Fluorescence resonance energy transfer
We have studied energy transfer to a dioxolane-substituted pentacene derivative, 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (TP-5), from tris(8-hydroxyquin-8-olinato) aluminum(III) (Alq3) by steady state and time-resolved photoluminescence (PL) spectroscopy. The Förster transfer radius is 27 Å, calculated from the fluorescence spectrum of Alq3 and the absorption spectrum of TP-5. We find that pentacene emission dominates the PL spectra of TP-5:Alq3 guest-host films, even at concentrations where the typical guest separation is significantly larger than the Förster transfer radius. Monte Carlo simulations of energy transfer to randomly dispersed guest molecules in the host matrix show that Förster-type energy transfer cannot completely account for the PL dynamics of the guest and host. Exciton diffusion within the Alq3 host followed by fluorescence of the host molecules or energy transfer to the guest explains the PL spectra and dynamics.
We present high efficiency and high luminance molecular organic light-emitting diodes (MOLEDs) using a conducting polymer as a hole-injecting electrode (anode), a CsF/Al bilayer as a cathode, and silole derivatives as an emitter and/or an electron transporter. The conducting polymer films, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), were either spin-cast from aqueous dispersions or pre-coated on plastic substrates (courtesy Agfa Gevaert N.V. Belgium). The surface sheet resistance of the conducting polymer films is in the range of 150Ohms/sq ~ 1500 Ohms/sq. MOLEDs fabricated with a low sheet resistance (150 Ohms/sq) conducting polymer as an anode without using an ITO underlayer and CsF/Al as a cathode exhibit very low operating voltages (4.5V @ 100 cd/m2 and 6.5V @ 1,000 cd/m2). This good device performance is attributable to the low sheet resistance of the conducting polymer anode and the high electron mobility of the silole derivative, namely 2,5-bis-(2',2"-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), used as an electron transporter. Efficient electron injection from the CSF/Al cathode to the PyPySPyPy electron injection/transport layer also contributes to better charge balance and improved device efficiency.
We report the performance of molecular organic light-emitting diodes (MOLEDs) using silole derivatives as emissive and electron transport materials. Two siloles, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP) and 1,2-bis(1-methyl-2,3,4,5,-tetraphenylsilacyclopentadienyl)ethane (2PSP), with high PL quantum yields of 94% and 85%, respectively, were used as emissive materials. Another silole, namely 2,5-bis-(2',2"-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), was used as the electron transport material. MOLEDs using these two siloles and NPB as the hole transport material show a low operating voltage of approximately 4.5 V at a luminance of 100 cd/m2 and high external electroluminescence (EL) quantum efficiencies of 3.4% and 3.8%, respectively, at 100 A/m2. MOLEDs based on PPSPP exhibit a red-shifted EL spectrum which is assigned to an exciplex formed at the PPSPP:NPB interface.
We report on the fabrication and properties of single layer green light-emitting diodes (LEDs) based on fluorene- containing conjugated polymers and associated blends. We have used a new green fluorene based conjugated polymer (namely 5BTF8) as the emissive material as well as the host in blends with a guest hole transport triarylamine/fluorene copolymer (namely BFB) to fabricate bright and efficient single layer green polymer light-emitting diodes (PLEDs). An enhancement in both the electroluminescence quantum and power efficiency is seen for the blend. This observation indicates that the hole transport material leads to a significant improvement in hole injection and transport and thus to an improved charge carrier balance factor. A higher brightness and a lower turn on as well as operating voltage are also achieved for the blend. The emission from a green single layer LED with 5BTF8/BFB (4/1) as the emissive layer reaches a maximum brightness of 35000 cd/m2 with a maximum external quantum efficiency of 1.3% or 4.2 cd/A and a maximum power efficiency of 2.5 lm/W. Novel small area LEDs were also fabricated using a SiN insulating layer on top of the ITO that allowed much higher brightnesses to be achieved compared to the standard area LEDs due to the reduced heating and therefor to a better thermal management of the device. The emission from a PEDOT/5BTF8 small area LED reached a maximum brightness of 155,000 and 6,500,000 cd/m2 in DC and pulsed mode, respectively.
We report on the fabrication and properties of single layer blue light-emitting diodes (LEDs) based on conjugated polymer blends. We have used poly(9,9-dioctylfluorene) (PFO) as the host and a hole transport triarylamine/fluorene copolymer as the guest. Despite the fact that the photoluminescence quantum efficiency of the blend is lower compared than that of the host and guest polymers on their own, an enhancement in both the electroluminescence quantum and power efficiency is seen for the blend. This observation indicates that the hole transport material leads to a significant improvement in hole injection and transport and a greatly improved charge carrier balance factor. A careful comparison of the photoluminescence and the electroluminescence spectra reveals that more emission originates from the guest polymer for electroluminescence than for photoluminescence. This can be rationalized by the expectation that both Forster transfer and charge transfer from the host to the guest occur under electrical operation of the device. Only Forster transfer is expected for optical excitation. A much higher brightness and a lower turn on and operating voltage is achieved for the blend. The emission from our optimized blue single layer LED reaches a maximum brightness of 1550 cd/m2 and has a maximum external quantum efficiency of .4% and a maximum power efficiency of 0.3 lm/W.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.