This study collects phytoplankton absorption and chlorophyll a data and examines their correlation in coastal waters around China measured between 2003 and 2017. Single-parameter model is built to construct phytoplankton absorption from pigment concentration. Gaussian decomposition technique extracts center wavelengths and bandwidths of 13 Gaussian functions, which constitute the modified Gaussian model, or so-called multiple-parameter model. Both models can reproduce measured phytoplankton absorption very well. In terms of the mean absolute relative error, single-parameter model can reproduce measured absorption within 30% and 60% between 380nm and 700nm for 40% and 75% of data, respectively. Meanwhile, multiple-parameter model can reproduce measured absorption within 15% for 80% of data, and within 20% for the majority of wavelengths between 380nm and 700nm.
This paper summarizes two approaches for estimating remote sensing reflectance by above-water method. One, represented by M99 and R06, is used to estimating the sea-surface reflectance ρ, while the other, represented by G01 and L10, is applied in estimating and eliminating the contribution of residual surface-reflected light and sun glint ε. Base on the second approach, this paper proposes a new approach (HY approach), which use the quasi-analytical algorithm to estimate the remote sensing reflectance of near infrared band, and then estimate and eliminate ε. Given the preliminary estimates of 𝑅𝑟𝑠(λ), we can use quasi-analytical algorithm to estimate the inherent optical properties (IOP) of the visible spectrum. With IOP model, IOP of the near infrared band can be calculated, which then can be used to estimate the 𝑅𝑟𝑠(NIR) of near infrared wave band. And ultimately the estimating of the ε can be realized. The in-situ data were gathered in September, 2018 in the East China Sea and the South China Sea, from 76 stations. The remote sensing reflectance (Rrs) was calculated simultaneously by above-water and in-water methods. Comparing the data analyzing result of HY approach in this paper with other approaches, the variation coefficient of HY and L10 is within 5% for most stations, and within 10% for HY and R06. Compared with the results of Rrs measured by in-water method, the variation coefficient of 80% of the stations is within 15%, and the results of the two methods have a good consistency. HY method avoids the problem of extra measurement of sea surface wind in methods such as R06. This method has simple and clear steps, fast iterative convergence and better calculation speed than L10 method.
In order to ensure the reliability of satellite data, it is necessary to test the authenticity of satellite products during the operation of ocean color satellite in orbit. Therefore, it is significant to obtain accurate sea surface field data, which can provide source data for the authenticity test of satellite products. At present, the main means of acquiring data at sea in China is still large-scale voyage test on board ships. This method needs high cost and requires a lot of manual operation, and the efficiency of acquiring data is extremely limited. However, a large amount of observation data can be obtained by establishing long-term automatic observation stations at sea, and the cost is low. In this paper, the continuous observation data of atmospheric optical parameters obtained by CE318 solar photometer installed on Wenzhou offshore platform in Zhejiang Province are analyzed based on the data processing method of AERONET. Combined with the actual situation, the automatic observation data of atmospheric optical parameters at sea are qualitatively controlled and verified by satellite data. Finally, a data quality control scheme for automatic observation of atmospheric optical parameters at sea is proposed.
With the rapid development of marine satellites in China, several marine satellites are about to be launched in recent planning. It is important to evaluate the payload performance of marine satellites, but the research on satellite load assessment is almost carried out for terrestrial satellites. The imaging region of the Coastal Zone Imager includes marine water bodies, so some assessment methods for estimating the performance of terrestrial satellites may not be applicable. In this paper, by analyzing and comparing the advantages and disadvantages of the current calculation methods of load performance evaluation, combined with the characteristics of the Coastal Zone Imager, the load performance evaluation scheme for Ocean color satellite is selected, and the real remote sensing data is used to verify the results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.