The conventional method of alignment for the laser launching system is complicated and low precision, because the system contains several optical channels and interlaced dimensions. In the high-energy laser launching system, the laser has the very high energy and abnormal wavelength in addition. That is, the alignment method is limited to cases of human safety due to the personnel involved and the higher accuracy for the lager multipler. In this paper, we prose a new method based on the auto-collimation method to solve the questions of human safety and high accuracy. In this method, we built a novel optical model used assistant optical path. To verify this method, simulations and experiment are performed. In the end, the precision impression and error compound of the laser launching system are analyzed and compared. The analysis results show that the aiming precision can reach 10” without human in the light path, which is only 1’ when using the conventional method.
The high-speed and small-volume mid-wave IR zoom lens capable of 16× magnification using a 320×256 IR FPA detector has been described. The system magnification can be continuously adjusted by simply moving two lens groups, which uses the root-exchange theory. The object-image exchange theory and root-exchange theory are presented. The structure using root-exchange theory can get large zoom ratio with simple volume and the smooth zoom curve. Mechanically compensated IR zoom lens design has these questions: firstly, big volume caused by complex optical structure; secondly, limited IR material and obvious focus shift with temperature change. The zoom lens using mechanically compensated method has solved all the questions that existed in traditional system. The system also contains much less optical material and has a very simple structure by using DOE elements. The element of first moving group and the second element of the second moving group are both DOE. As the DOE has minus Abb number, which is opposite of refractive materials, it can minimize the higher order chromatic aberration. Based on the characteristics, the chromatic aberration was balanced. Research on the thermal analysis and compensation is considered. The passive athermalization is made by DOE elements. DOE elements make the zoom lens maintain its performance when it is operating between -20°C and 60°C.The results show the high magnification zoom lens design performance, with small volume and light weight. The aberration of the system were well corrected and diffraction limited performance was achieved in required temperature range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.