We demonstrated photodarkening induced core laser leakage phenomenon in the long term operation of a 3 kW copumping fiber amplifier. Output power perturbation of 4~6 minutes period was observed in the 6 hours maximum power operation. Despite the perturbation, the maximum power also drops from 3 kW to 2.65 kW due to the leakage of the core laser. This indicates that the co-pumping scheme may not be suitable to achieve high power fiber laser with long term output stability. We also provide a solution by adopting the counter-pumping scheme that shows very stable output power in the 1-hour maximum power operation test.
We demonstrated a new phenomenon, namely, thermally induced core laser leakage in single trench fiber (STF), for the first time. The STF provides very high loss and power delocalization of higher order mode (HOM) and maintain the effective single mode operation. However these properties are chartered only under low power situations. In this paper we established a 976nm directly pumped high power co-pumping fiber amplifier based on the STF. The maximum output power was 1022W with a slope efficiency of 76%. Further increase the pump power will leads to the output power decrease. Meanwhile a micro second Level noise like power fluctuation was observed. No resonance frequency was observed in frequency domain indicating the mode instability is not triggered. We believe that it is the thermally induced waveguide index profile change due to the excessively heat load in the front section of STF that leads to the failure of HOM suppression and the power of FM was coupled into the HOM. However the heat load in the rear section of STF was relatively low and the HOM leaked into the cladding due to the bending loss. We provide a mitigating method by pumping with pump light of smaller absorption. A maximum power of 1330W was achieved without power decrease via pumping the STF with 905nm and 976nm pump light (same amplifier). To our best knowledge, this is the first demonstration of thermally induced core laser leakage in STF and the pertinent results can provide significant reference for future optimization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.