We introduce a novel technique allowing simultaneous combining and reshaping of several non-coherent laser sources. This Multi-Plane Light Conversion technique is based on a passive, tailored and multi-reflective phase element which realizes intrinsically lossless unitary transforms. This approach is particularly suitable for multiple kilowatt laser beam shaping applied to improved material processing. We present numerical and experimental results of 3 applications of this shaper: a multiple multi-mode laser beam shaper, a beam shaper and combiner for generating adaptive tailored beam, and a beam combiner managing up to ten incoherent laser beams with optimum output beam quality (M2). High power handling, up to 12 kW, of MPLC based shaper is also demonstrated.
KEYWORDS: Multiplexers, Beam shaping, Multiplexing, Local area networks, Optical communications, Telecommunications, Single mode fibers, Digital signal processing, Modulation, Laser processing, Plutonium, Demultiplexers
Multi-Plane Light Conversion enables novel beam shaping devices, including spatial multiplexers. After a presentation of the achievable performances of these spatial multiplexers, which can combine 10 spatial modes with cross-talk below -22 dB and insertion loss below 4 dB, we review the performances of Multi-Plane Light Con-version in multiple application cases. These application cases include mode-multiplexed optical amplification, high-power beam shaping and combining and LAN fiber capacity upgrade.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.