This paper describes a rigorous yet flexible standard cell place-and-route flow that is used to quantify block-level power, performance, and area trade-offs driven by two unique cell architectures and their associated design rule differences. The two architectures examined in this paper differ primarily in their use of different power-distribution-networks to achieve the desired circuit performance for high-performance logic designs. The paper shows the importance of incorporating block-level routability experiments in the early phases of design-technology co-optimization by reviewing a series of routing trials that explore different aspects of the technology definition. Since the electrical and physical parameters leading to critical process assumptions and design rules are unique to specific integration schemes and design objectives, it is understood that the goal of this work is not to promote one cell-architecture over another, but rather to convey the importance of exploring critical trade-offs long before the process details of the technology node are finalized to a point where a process design kit can be published.
To address the variability challenges inherent to 45 and 32nm as early as possible, a model-based variability analysis has
been implemented to predict lithography induced electrical variability in standard cell libraries, and this analysis was
used optimize the cell layout and decrease variability by up to 40%.
In recent years, various DFM techniques are developed and adopted by the designers to improve circuit yield and
reliability. The benefits from applying a DFM technique to a circuit often come at the expense of degrading other
process or design attributes. In this paper, we discuss two widely deployed techniques: double vias and wire
spreading/widening, show the benefits and trade-offs of their usage, and practical ways to implement them in SoC
designs.
As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.