The evaluation of head malformations plays an essential role in the early diagnosis, the decision to perform surgery and the assessment of the surgical outcome of patients with craniosynostosis. Clinicians rely on two metrics to evaluate the head shape: head circumference (HC) and cephalic index (CI). However, they present a high inter-observer variability and they do not take into account the location of the head abnormalities. In this study, we present an automated framework to objectively quantify the head malformations, HC, and CI from three-dimensional (3D) photography, a radiation-free, fast and non-invasive imaging modality. Our method automatically extracts the head shape using a set of landmarks identified by registering the head surface of a patient to a reference template in which the position of the landmarks is known. Then, we quantify head malformations as the local distances between the patient’s head and its closest normal from a normative statistical head shape multi-atlas. We calculated cranial malformations, HC, and CI for 28 patients with craniosynostosis, and we compared them with those computed from the normative population. Malformation differences between the two populations were statistically significant (p<0.05) at the head regions with abnormal development due to suture fusion. We also trained a support vector machine classifier using the malformations calculated and we obtained an improved accuracy of 91.03% in the detection of craniosynostosis, compared to 78.21% obtained with HC or CI. This method has the potential to assist in the longitudinal evaluation of cranial malformations after surgical treatment of craniosynostosis.
The evaluation of cranial malformations plays an essential role both in the early diagnosis and in the decision to perform surgical treatment for craniosynostosis. In clinical practice, both cranial shape and suture fusion are evaluated using CT images, which involve the use of harmful radiation on children. Three-dimensional (3D) photography offers noninvasive, radiation-free, and anesthetic-free evaluation of craniofacial morphology. The aim of this study is to develop an automated framework to objectively quantify cranial malformations in patients with craniosynostosis from 3D photography. We propose a new method that automatically extracts the cranial shape by identifying a set of landmarks from a 3D photograph. Specifically, it registers the 3D photograph of a patient to a reference template in which the position of the landmarks is known. Then, the method finds the closest cranial shape to that of the patient from a normative statistical shape multi-atlas built from 3D photographs of healthy cases, and uses it to quantify objectively cranial malformations. We calculated the cranial malformations on 17 craniosynostosis patients and we compared them with the malformations of the normative population used to build the multi-atlas. The average malformations of the craniosynostosis cases were 2.68 ± 0.75 mm, which is significantly higher (p<0.001) than the average malformations of 1.70 ± 0.41 mm obtained from the normative cases. Our approach can support the quantitative assessment of surgical procedures for cranial vault reconstruction without exposing pediatric patients to harmful radiation.
We present a corner-detection method named arc length-based angle estimator (AAE). Different from most of the existing approaches, AAE focuses on employing angle detection for finding corners, because angle is an important measure for discrete curvature. AAE provides a new robust solution to the estimation of the K-cosine. In AAE, the K-cosine estimation issue in the x, y space is considered as the problem of the slope estimations in the s, x and s, y spaces, where s is the arc length. Then, weighted least square fitting is employed to address such a slope estimation issue. Experimental results demonstrate that AAE can achieve promising performance in comparison with some recent state-of-the-art approaches under two commonly used evaluation metrics, namely average repeatability and localization error criteria.
Purpose: Improving the shape statistics of medical image objects by generating correspondence of interior skeletal points. Data: Synthetic objects and real world lateral ventricles segmented from MR images. Method(s): Each object’s interior is modeled by a skeletal representation called the s-rep, which is a quadrilaterally sampled, folded 2-sided skeletal sheet with spoke vectors proceeding from the sheet to the boundary. The skeleton is divided into three parts: up-side, down-side and fold-curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along their skeletal parts in each training sample so as to tighten the probability distribution on those spokes’ geometric properties while sampling the object interior regularly. As with the surface-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and sampling regularity. The spokes’ geometric properties are skeletal position, spoke length and spoke direction. The properties used to measure the regularity are the volumetric subregions bounded by the spokes, their quadrilateral sub-area and edge lengths on the skeletal surface and on the boundary. Results: Evaluation on synthetic and real world lateral ventricles demonstrated improvement in the performance of statistics using the resulting probability distributions, as compared to methods based on boundary models. The evaluation measures used were generalization, specificity, and compactness. Conclusions: S-rep models with the proposed improved correspondence provide significantly enhanced statistics as compared to standard boundary models.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.