Chemical vapor deposition (CVD) diamond film has broad application prospect as heat sink in microelectronic field for its excellent thermal conductivity. The micro CVD diamond heat sinks with the size of 50μm×100μm×2000μm were prepared using mould copy technique. The micro silicon moulds for deposition of micro CVD diamond heat sinks were fabricated using inductivity coupling plasma (ICP) etching process. Micro CVD diamond heat sinks were synthesized under 2% methane and 98% hydrogen by hot filament CVD (HFCVD) method. The micro CVD diamond heat sinks were investigated by SEM, Raman and photo thermal deflection. The results show that favorable micro CVD heat sinks having a thermal conductivity of 960W·m-1·K-1 can be prepared by mould copy technique.
The mechanical properties of carbon fiber reinforced resin composites (CFRP) including the epoxy matrix, the carbon fiber and the interface of the carbon fiber/epoxy composites were investigated by means of nanoindentation technique. The hardness, Young’s modulus of the components in CFRP were obtained. The results show that the hardness and Young’s modulus have a gradient variation from the epoxy matrix to carbon fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.