Dome-C in the Antarctic Plateau is a privileged site for Astronomy, with one of the lowest concentrations of water vapor in the world, providing a pristine atmospheric window for IR observations. Together with the long winter nights, this allows for extended continuous observational campaigns. At the Concordia Station, ASTEP has taken advantage of the weather and long nights to observe long-period transiting exoplanets for over a decade. With the Cryoscope Pathfinder we now plan to take advantage of the dark IR window between 2.35 and 2.55𝜇m.
The unique design of Cryoscope Pathfinder is optimized for a very wide field of view and very thermal background. It is a cryogenic 0.26 m telescope designed for observations in K-dark with a field of view of 16 deg^2. This is the first step for a much more ambitious project, the full scale 1-meter class Cryoscope telescope, with a field of view of 50 deg^2. The initial science drivers are the study of exoplanets and of the infrared transient sky, where it will play a major role in the localization of gravitational wave sources. Furthermore, many other science topics will be enabled by Cryoscope and through synergies with other surveys.
KEYWORDS: Stars, Sensors, Infrared radiation, Infrared imaging, Telescopes, Absorption, Space operations, Infrared telescopes, Infrared detectors, Signal to noise ratio
A wide-field zenith-looking telescope operating in a mode similar to time-delay-integration (TDI) or drift scan imaging can perform an infrared sky survey without active pointing control, but it requires a high-speed, low-noise infrared detector. Operating from a hosted payload platform on the International Space Station (ISS), the Emu space telescope employs the paradigm-changing properties of the Leonardo SAPHIRA electron avalanche photodiode array to provide powerful new observations of cool stars at the critical water absorption wavelength (1.4 μm) largely inaccessible to ground-based telescopes due to the Earth’s own atmosphere. Cool stars, especially those of spectral-type M, are important probes across contemporary astrophysics, from the formation history of the Galaxy to the formation of rocky exoplanets. Main sequence M-dwarf stars are the most abundant stars in the Galaxy and evolved M-giant stars are some of the most distant stars that can be individually observed. The Emu sky survey will deliver critical stellar properties of these cool stars by inferring oxygen abundances via measurement of the water absorption band strength at 1.4 μm. Here, we present the TDI-like imaging capability of Emu mission, its science objectives, instrument details, and simulation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.