Silicon photonic modulators are a key component for electro-optic transmitter within data centers. Electro-refractive modulators relying on free carrier plasma dispersion in Mach-Zehnder interferometer have become the most popular solution. Accumulation–based capacitive modulators are an efficient approach, which can reduce the modulation power consumption. In this work we study the behavior of capacitive modulators with polycrystalline silicon to form the capacitance. The modulators are made within the standard fabrication flow with only few add-ons. In this work we show that furnace annealing conditions and excimer laser annealing conditions during the polycrystalline silicon formation enhance the modulator bandwidths.
Silicon modulators are used to generate frequency agile electro-optical frequency combs. Applications are discussed for both fine resolution dual comb spectroscopy and data communications based on wavelength division multiplexing transmission.
Mid-infrared (mid-IR) spectroscopy is a nearly universal way to identify chemical and biological substances, as most of the molecules have their vibrational and rotational resonances in the mid-IR wavelength range. The development of silicon-based mid-IR photonic circuits has recently gained a lot of attention. Among the different materials available in silicon photonics, germanium (Ge) and silicon-germanium (SiGe) alloys with a high Ge concentration are particularly interesting because of the wide transparency window of Ge extending up to 15 µm.
In this work we will review recent results in the development of photonics circuit based on Ge-rich SiGe waveguides.
Optical frequency combs (OFCs) have played an important role over the past years for optical frequency metrology and synthesis, for astronomy, telecommunications, and spectroscopy. Among the different methods that have been studied for OFC generation, electro-optic frequency combs (EOFCs) using electro-optical modulators show a large flexibility in comb repetition rate, making it a solution of choice for absorption spectroscopy where a fine sampling in the frequency domain is usually required. Silicon photonics is a promising platform for EOFC generation, thanks to its high volume production and strong light confinement allowing to achieve small footprint photonic integrated circuits (PICs). Additionally, silicon PICs benefit from a direct compatibility with complementary metal-oxide semiconductor (CMOS) fabrication process. Carrier depletion-based modulators have already proved to be efficient and to achieve high bandwidth operation, which makes them suitable for EOFC generation. In this work we will show the first dual comb spectroscopy experiment using silicon optical modulators. As a proof of concept for spectroscopy applications, beating of two silicon EOFCs with slightly different repetition rates is observed in the RF domain using a multi-heterodyne detection technique. Each EOFC is generated from a silicon push-pull Mach-Zehnder modulator and shows typically 12 equally separated lines. The comb repetition rate is swept from 500 MHz to 12.5 GHz, thanks to the inherent flexibility of EOFCs, while their relative offset is kept steady (4 MHz). This technique is used to recover the transfer function of an optical band-pass filter without any tunable laser.
Optical frequency combs (OFCs) are involved in a large diversity of applications such as metrology, telecommunication or spectroscopy. Different techniques have been explored during the last years for their generation. Using an electrooptical modulator (EOM), it is possible to generate a fully tunable OFC for which the optical repetition rate is set by the frequency of the applied electrical radio frequency (RF) signal. In order to realize on-chip OFC generators, silicon photonics is a well-suited technology, benefiting from large scale fabrication facilities and the possibility to integrate the electronics with the EOM. However, observing OFCs with a repetition rate lower than 10 GHz can be challenging since such spacings are smaller than the typical resolution of grating-based optical spectrum analyzers. To overcome this issue, two alternative solutions based on heterodyne detection techniques are used to image the OFC on the electrical RF domain. The first technique consists in applying two frequencies close to each other simultaneously on the modulator, and observing the beating between the resulting two combs. Another method consists in observing the beating between the OFC and the input laser, once the frequency of this input laser has been shifted from the center of the OFC by means of an acousto-optic modulator. Based on both measurement techniques, OFCs containing more than 10 lines spaced with repetition rates from 100 MHz to 15 GHz have been observed. They are generated using a 4-mm long silicon depletionbased traveling-wave Mach-Zehnder modulator (MZM) operating at a wavelength of 1550 nm.
The strong evolution of silicon photonics towards very low power consumption circuits leads to the development of new strategies for photonic devices, especially for power-hungry components such as optical modulators. One strategy is to use Pockels effect in Si waveguides. However, bulk Si is a centrosymmetric semiconductor, which cannot exhibit any second order optical nonlinearities. Nonetheless, under a strain gradient, generated by depositing a stressed layer on Si waveguides, this restriction vanishes. In our work, we experimentally demonstrated a Pockels effect based electro-optic modulation at high frequency (> 5GHz) using a strained silicon Mach-Zehnder modulator.
Photonics integration in the mid-Infrared (mid-IR) spectral range, and more specifically the fingerprint region between 5 and 20 μm wavelength has garnered a great interest as it provides an immense potential for applications in spectroscopy and sensing. The unique vibrational and rotational resonances of the molecules at these wavelengths can be exploited for non-intrusive, unambiguous detection of the molecular composition of a broad variety of gases, liquids or solids, with a great interest for many high-impact applications. Fourier-transform spectrometers (FTS) are a particularly interesting solution for the on-chip integration due to their superior robustness against fabrication imperfections. However, the performance of current on-chip FTS implementations is limited by tradeoffs between bandwidth and resolution, for a given footprint. In this work we propose and experimentally demonstrate a new FTS approach that gathers the advantages of spatial heterodyning and optical path tuning by thermo-optic effect. The high resolution is provided by spatial multiplexing among different interferometers with increasing imbalance length, while the broadband operation is enabled by fine sampling interval of the optical path delay in each interferometer harnessing the thermo-optic effect. This novel approach overcomes the bandwidth-resolution tradeoff in conventional counterparts. The fabricated device enables a bandwidth as wide as 603 cm-1 (instead of 74 cm-1 with no-thermal tuning) near 7.7 μm wavelength, keeping a resolution better than 15 cm-1 with the same footprint. This device is fabricated in a Ge-rich graded-index SiGe platform with experimentally proven low loss operation up to 8.5 μm wavelength.
Silicon photonics is a promising solution for next generation of short-range optical communication systems. Silicon modulators have driven an important research activity over the past years, and many transmission links using on-off keying modulation format (OOK) were successfully demonstrated with a large diversity of modulator structures. In order to keep up with the demand of increasing bitrates for limited bandwidths in Datacom applications, higher modulation formats are explored, such as quadrature phase shift keying (QPSK) or 4-level pulse amplitude modulation (PAM-4). However, driving the modulators to generate PAM-4 signals commonly require expensive and power-hungry electronic devices such as digital-to-analog converters (DACs) for pulse-shaping and digital signal processors (DSP) for nonlinearity compensation. Lastly, new solutions were studied to overcome this issue, including new driving methods based on the use of two different input binary sequences applied directly on the modulator. While most of the reported works are focused on the C-band of communication, the O-band can present a definitive advantage due to the low dispersion of standard single-mode (SSMF) fiber. For those reasons, we demonstrate the generation of a 10-Gbaud DAC-less PAM-4 signal in the O-band using a depletion-based silicon traveling wave Mach-Zehnder modulator (TWMZM). An open eye diagram was obtained, and a bit error rate (BER) of 3.8×10-3 was measured for a received optical power of about -6 dBm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.