Study of metabolic changes during epithelial–mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism.
Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.