Support Vector Regression performs well on estimating illumination chromaticity in a scene. Then the concept of Least Squares Support Vector Regression has been put forward as an effective, statistical and learning prediction model. Although it is successful to solve some problems of estimation, it also has obvious defects. Due to a large amount of support vectors which are chosen in the process of training LS-SVR , the calculation become very complex and it lost the sparsity of SVR. In this paper, we get inspiration from WLS-SVM(Weighted Least Squares Support Vector Machines) and a new method for sparse model. A Density Weighted Pruning algorithm is used to improve the sparsity of LS-SVR and named SLS-SVR(Sparse Least Squares Support Vector Regression).The simulation indicates that only need to select 30 percent of support vectors, the prediction can reach to 75 percent of the original one.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.