The performance of the Cherenkov threshold detectors (XCET) used in the secondary beam areas (SBA) at CERN is limited by their built-in optics. This study showcases an improved design using compound parabolic concentrators (CPCs) to reduce size and cost of the optics while optimizing the light collection efficiency. The detector was simulated with Geant4 over its full experimental range in terms of pressure, beam momentum, and particle type. The efficiency of the current design was found to be limited by the geometry of the parabolic mirror. The optimized CPC designs resulted in a size reduction of up to 54% and improved photon collection up to 67% compared to the original design when using CO2 as radiator gas and 276% when using R-218. These results highlight the advantages of using CPC and Monte Carlo simulations in the development of Cherenkov threshold detectors and may be useful for further improvements in the next generation of the XCET.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.