Plasmonic enhancement has a great potential for performance improvement of high operating temperature (HOT) photodetectors, especially those optimized for long-wavelength infrared (LWIR). Conventional HOT photodetectors exhibit poor quantum efficiency (QE) due to short carrier diffusion lengths of narrow bandgap semiconductors and relatively low absorption coefficients within the LWIR range. Plasmon-driven subwavelength light confinement enables high absorption even in a very thin absorber that provides efficient carrier collection, boosting the detector QE. We propose a photovoltaic detector equipped with a two-dimensional subwavelength hole array (2DSHA) in gold metallization on InAs/InAsSb type-II superlattice (T2SL) heterostructure. Our numerical study utilizing the finite-difference time-domain (FDTD) method predicts five times increased absorption in comparison with a conventional, back-side illuminated device. The simulated behavior of the plasmonic structure was confirmed experimentally by transmittance measurements, which revealed resonant features corresponding to various plasmonic modes.
The key component of a quantum cascade vertical cavity surface emitting laser (QC VCSEL) is a monolithic high-contrast grating (MHCG) that replaces one of the distributed Bragg mirrors (DBR). The grating induces the polarization component necessary to stimulated emission in quantum cascade active regions embedded in MHCG. The complex electrical and optical phenomena defining the performance of the structure depends on the grating parameters (stripes dimensions, position, thickness and doping concentrations). This work presents optimization of QC VCSELs that is aimed to achieve minimal thresholds currents in the pulse operation regime.
We introduce an inverted refractive-index-contrast grating (ICG) that is a compact alternative to DBRs. In ICG a subwavelength grating made of a low refractive index material is implemented on a high refractive index cladding. We experimentally demonstrate high reflectivity of proof-of-concept ICG fabricated by 3D microprinting, in which IP-Dip photoresist grating is deposited on silicon cladding. We also show that the ICG provides nearly total optical power reflectance whenever the refractive index of the grating exceeds 1.75, irrespective of the refractive index of the cladding.
We present the nonlinear coupled-mode theory for anisotropic microcavity lasers, the birefringent spin-lasers in particular. The modeling technique is based on the decomposition of Maxwell-Bloch equations in a properly-chosen vectorial basis, imprinting all the important information about cavity geometry, gain medium and local anisotropies into the coefficients of coupled-mode equations. The formalism is applied to spin-lasers with high-contrast gratings, in which the interplay of spin dynamics and cavity birefringence offers new possibilities for near-future data-transfer technologies. The model can be used to investigate the effects of spin modulation and grating parameters on dynamical performance of realistic grating-based spin-laser. Moreover, it is used to derive the extended spin-flip model. We show, that the currently-used spin-flip model requires the corrections in order to describe the grating-based spin-VCSELs with extremely large frequency splitting.
High contrast gratings (HCGs) are diffraction gratings whose period is less than the wavelength of light, made of a material with a high refractive index. Monolithic HCGs (MHCGs) are made of the same material as the cladding. They can be made of almost any material used in optoelectronics. We show experimentally and via simulations that shaping the cross-section of the MHCG stripes enables very broad high reflection spectrum.
Monolithic high contrast grating (MHCG) is a particular type of a grating where both substrate and grating bars are made of the same material, in our case this is GaAs.
Here we present the numerical simulations of GaAs-based planar focusing MHCG mirrors. In particular we compare the dependence of their reflectivity and the maximum intensity of the reflected light at the focal point with conventional parabolic reflectors of the same size and identical focal lengths. Our study is performed for both TE and TM polarizations. Moreover, we analyze the influence of geometrical imperfections (i.e. local disturbance of the height, period or fill factor of the grating) on the focusing properties of the grating mirrors.
The project (POIR.04.04.00-00-4358/17) is carried out within the HOMING programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.
We design and process more than 100 different 980 nm MHCG mirror designs, to determine optimal parameters for the use of the MHCGs as mirrors for VCSELs. We present measured power reflectance spectra and compare the results to our with numerical simulations. We discuss the impact of the actual processed geometric shape of the MHCG stripes on the measured power reflectance of the MHCGs..
Transparent electrodes are essential components of optoelectronic devices, however, increasing requirements with respect to transmission at a level approaching 100% and sheet resistance below 1 Sq-1 are still a challenge. In this talk, we show that monolithic deep-subwavelength grating integrated with metal enables to reach those requirements for broad spectrum of polarized light. It facilitates injection of very high current densities exceeding 20 kA cm-2 not causing noticeable heat generation that meets the requirements of the most demanding optoelectronic devices such as semiconductor lasers.
High contrast gratings (HCGs) are nowadays very popular in research due to small dimensions and their highly reflective or transmissive properties. By proper alignment of HCG bars they may become focusing reflectors or lenses. Here we present simulations of GaAs-based planar focusing reflectors realized by monolithic HCGs. We present how to design focusing reflectors and discuss how to tune their reflectivity.
Since the very first demonstration of a vertical-cavity surface-emitting laser (VCSEL) incorporating subwavelength high refractive index contrast grating (HCG) membrane mirror in 2007 by the group of Prof. Chang-Hasnain, numerous research groups around the world have presented devices based on the same concept emitting at wavelengths from ~400 to 1550 nm manufactured in gallium nitride (GaN), gallium arsenide (GaAs) and indium phosphide (InP) material systems. On one hand, an open access to a VCSEL cavity through an air gap combined with a very low inertia of an HCG mirror opened a way for a large range of emission wavelengths in MEMS tunable VCSELs. On the other hand, an air gap in a cavity generally hinders heat and current flow, while the potentially rather fragile HCG membrane is prone to mechanical instability. We present electrically-injected VCSELs incorporating monolithic HCG (MHCG) mirrors. An MHCG mirror being a special case of an HCG mirror, keeps the extraordinary features of an HCG such as scalability with wavelength, ultra-low thickness and very large power reflectance, but doesn't have to be surrounded by a low refractive index material and hence can be monolithically integrated with an all-semiconductor VCSEL cavity. We present an extensive analysis of the impact of the MHCG parameters on the modal properties and thermal stability of single- and double-mode devices, with various oxide apertures. We additionally compare MHCG VCSELs and generic distributed Bragg reflector VCSELs in terms of modal properties and temperature stability based on measured data and the results of computer simulations.
A physical structure constructed from stripes of a material with high refractive index that are separated with a low refractive index medium is called a high contrast grating (HCG). Here we present the simulations of long focal-length GaAs-based planar focusing monolithic HCG reflectors designed for 980 nm. We discuss how the focal spot size depends on the reflector size and how it is possible to improve the maximum value of the electric field intensity distribution.
A new structure of semiconductor lasers called the quantum-cascade vertical-cavity surface emitting laser (QC VCSEL) is proposed in the present paper. A structure of the QC VCSEL is a cross of the quantum-cascade laser (QCL) and the vertical-cavity surface-emitting laser (VCSEL). The QC VCSEL is expected to demonstrate important advantages of laser emission of both the QCL and the VCSEL without their drawbacks. In the QC VCSEL, the monolithic highcontrast grating (MHCG) structure is applied to cope with the fundamental requirement of the polarization direction of the electro-magnetic radiation perpendicular to the quantum cascade (QC) necessary to initiate within it the stimulated emission. The QC VCSEL structure recommended in the present paper is a result of the advanced modeling with the aid of our comprehensive self-consistent optical-electrical model.
III-N-based edge-emitting lasers suffer from low refractive index contrast between GaN, AlGaN and InGaN layers, conventionally used in their epitaxial structures. This issue becomes more severe with an increase in wavelength at which those devices operate when tuning from blue-violet to real blue and green light. To overcome this issue and to increase the refractive index contrast other materials must be employed within the epitaxial structures replacing the standard nitride layers with materials with lower refractive index. We demonstrate results of effective-index numerical calculations performed for the state-of-the-art semipolar real blue (471 nm) and green (518 nm) edge-emitting lasers with structural modifications that include ITO, AlInN, plasmonic GaN:Ge and nanoporous GaN layers. Such solutions are extensively investigated for III-N-based EELs operating in blue-violet region but only separately. Using combination of these solutions we managed to increase optical confinement factor over twice in blue- and over 3.5-times in green-EELs.
We propose a novel optical sensing system based on one device that both emits and detects light consisting of a verticalcavity surface-emitting laser (VCSEL) incorporating an high contrast grating (HCG) as a top mirror. Since HCGs can be very sensitive to the optical properties of surrounding media, they can be used to detect gases and liquid. The presence of a gas or a liquid around an HCG mirror causes changes of the power reflectance of the mirror, which corresponds to changes of the VCSEL’s cavity quality factor and current-voltage characteristic. By observation of the current-voltage characteristic we can collect information about the medium around the HCG. In this paper we investigate how the properties of the HCG mirror depend on the refractive index of the HCG surroundings. We present results of a computer simulation performed with a three-dimensional fully vectorial model. We consider silicon HCGs on silica and designed for a 1300 nm VCSEL emission wavelength. We demonstrate that our approach can be applied to other wavelengths and material systems.
This paper shows the possibility of stimulated emission in quantum cascades (QC) embedded in a vertical cavity and proposes a design for the first quantum-cascade vertical-cavity surface-emitting laser (QC VCSEL). In the proposed design, the top VCSEL mirror is a monolithic high-refractive-index contrast grating (MHCG), which serves as both an optical coupler and as the region in which the vertical component of the electrical field is induced, enabling stimulating emission from the quantum cascades. Using a three-dimensional, fully vectorial optical model, a stand-alone MHCG is analysed in terms of its possible use as a QC VCSEL mirror. The distribution of the optical field and threshold gain in VCSELs with QC embedded in MHCG are also simulated.
We propose semiconductor-metal subwavelength grating (SMSG) which can be implemented as VCSEL mirror. Such new type of SMSG plays a double role of the electric contact and mirror simultaneously. It facilitates high optical power reflectance, perfectly vertical current injection. Such construction eliminates the inbuilt current confinement and allows scaling of emitted power by simple variation of SMSG spatial dimensions. To give the credibility to proposed design we perform numerical analysis of VCSEL with SMSG using fully vectorial optical model. We discuss properties of the proposed design realized in arsenide-based material configuration.
In this work I present visually the results of a numerical analysis of the transition between classical High-Contrast Gratings (HCGs) and Monolithic High-Contrast Gratings (MHCGs) and I identify the source of the differences between the scatterless reflection peaks and those that either show strong scattering or do not occur in MHCGs. I show that the key property of MHCGs is the independence of the peak reflectivity wavelength on the substrate refractive index, which results from the modal interference inside the grating and the special form of its impedance/admittance matrix. This form of matrix can be obtained for any wavelength and in almost any material system by tuning the geometrical parameters of the grating—its pitch, fill-factor, and height.
This paper proposes a design for the monolithic high-contrast mirror designed for infrared radiation. We use a fully vectorial model to search for the construction parameters of semiconductor monolithic high-contrast grating (MHCG) mirror providing maximal power reflectance. Such mirror can play a role of optical coupler, being alternative for distributed Bragg reflectors (DBRs). DBRs for mid- and long-wavelength infrared radiation are technologically highly demanding in terms of uniform quarter-wavelength layers control. Our results comprise a complete image of possible highly reflecting MHCG mirror constructions for potential use in optoelectronic infrared devices and systems.
We present results of computer simulations of vertical cavity surface emitting lasers (VCSELs) using novel, highreflectivity monolithic high refractive-index contrast grating (MHCG) mirrors and their more advanced version, partially covered by a thin metal layer - metallic MHCG (mMHCG) mirrors. The first experimental realization of this new class of mirrors is presented and discussed. We show that the metal layer does not deteriorate the high reflectivity of an mMHCG mirror, but in contrary, is a crucial element which allows high reflectivity and additionally opens a way for a more efficient electrical pumping of a VCSEL. Comparison of results of thermal-electrical-carrier-gain self-consistent simulations of both MHCG- and mMHCG-based VCSELs is presented and discussed. It is shown that using mHCG mirror as a top mirror of a VCSEL improves electrical characteristics and greatly decreases the differential resistance of the device.
High Contrast Gratings (HCGs) become an attractive alternative for Distributed Bragg Reflectors (DBRs) used as high reflecting mirrors for VCSELs. In this paper we propose to implement HCG or monolithic HCG as a top mirror of the 1650nm InP-based VCSEL intended for use as a methane sensing device. Its unique feature is related to the fact that light taking part in the resonance can be accessed without opening the laser cavity due to the slow light phenomenon which occurs in HCG. Particular designs of HCGs allow to concentrate significant part of the mode between the HCG stripes. In such constructions the presence of the substance in the vicinity of the HCG which interacts with light resonating in the laser will change its emission properties. This enables sensing absorption or change to the refractive index in proximity of the laser based on the emission parameters of the laser. We present a numerical analysis of 1650nm MHCG and HCG mirrors based on fully vectorial optical model. We found optimal parameters of HCGs and MHCGs to detect absorption and refractive index variations in the vicinity of the gratings, based on changes in power reflectance of analysed mirrors. Additionally we consider HCG and MHCG constructions which allow for broad wavelength tuning by the change of the refractive index of substance surrounding mirror.
Monolithic High refractive index Contrast Grating (MHCG) allows several-fold size reduction of epitaxial structure of VCSEL and facilitates VCSEL fabrication in all photonic material systems. MHCGs can be fabricated of material which refractive index is higher than 1.75 without the need of the combination of low and high refractive index materials. MHCGs have a great application potential in optoelectronic devices, especially in phosphide- and nitride-based VCSELs, which suffer from the lack of efficient monolithically integrated DBR mirrors. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. In this paper we present results of numerical analysis of MHCGs as a high reflective mirrors for broad range of refractive indices that corresponds to plethora of materials typically used in optoelectronics. Our calculations base on a three-dimensional, fully vectorial optical model. We investigate the reflectance of the MHCG mirrors of different design as the function of the refractive index and we show the optimal geometrical parameters of MHCG enabling nearly 100% reflectance and broad reflection stop-band. We show that MHCG can be designed based on most of semiconductors materials and for any incident light wavelength from optical spectrum.
Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.
In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that
incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG
mirror that is composed of high index material surrounded only on one side by low index material. We show the impact
of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data
communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is
replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL’s
fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror
periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the
confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly
determined in two or three dimensions due to the periodic nature of the grating mirror.
In the talk we show the process of modeling complete physical properties of VCSELs and we present a step-by-step development of its complete multi-physics model, gradually improving its accuracy. Then we introduce high contrast gratings to the VCSEL design, which strongly complicates its optical modeling, making the comprehensive multi-physics VCSEL simulation a challenging task. We show, however, that a proper choice of a self-consistent simulation algorithm can still make such a simulation a feasible one, which is necessary for an efficient optimization of the laser prior to its costly manufacturing.
We study theoretically and experimentally spectral and polarization characteristics of hybrid systems of VCSELs integrated within liquid crystal (LC) cells. Three cases are considered: Nematic or cholesteric LC on top of VCSEL, coupled-cavity system with the second cavity next to the VCSEL’s one filled in with nematic LC and a system with a nematic LC inside the VCSEL cavity. For the case of nematic liquid crystal - VCSEL coupled cavity system we demonstrate selection between two orthogonal directions of linear polarization of the fundamental mode by changing the LC length or by electro-optical tuning of the LC director. For the case of cholesteric liquid crystal-VCSEL system we demonstrate lasing on circularly polarized (CP) modes due to the LC band gap for CP light. The transition from nematic to isotropic phase of the LC when increasing temperature leads to a drastic change of the polarization of the generated light from left-handed circular to linear polarization. Finally, we investigate the possibility of efficient wavelength tuning by utilizing electrooptical effect in nematic LC layer integrated next to the active region in a VCSEL cavity.
Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.
This paper presents results of computer simulation of 1D monolithic high refractive index contrast grating (MHCG) reflector also called surface grating reflector (SGR). We analyzed optical properties of the GaAs reflector designed for 980 nm wavelength with respect to the grating parameters variation. We also determined the electric field patterns after reflection from the structure in several cases of parameters variation. We show that thanks to the scalability and design simplicity, proposed design is a promising candidate for simple, next generation vertical cavity surface emitting lasers emitting from ultra-violet to infrared.
In this paper we present results of computer optical simulations of VCSEL with modified high refractive index contrast grating (HCG) as a top mirror. We consider the HCG of two different designs which determine the lateral aperture. Such HCG mirror provides selective guiding effect. We show that proper design of aperture of HCG results in almost sixfold increase in cavity Q-factor for zero order mode and a discrimination of higher order modes.
We present the optimization of the carrier injection, heat flow and optical confinement aimed at single mode operation in anti-guiding long-wavelength VCSELs and VCSEL arrays. The analyzed structure incorporates InP/AlGaInAs quantum wells within an InP cavity. The cavity is bounded by GaAs/AlGaAs DBRs. The tunnel junction is responsible for carrier funneling into the active region. The air-gap etched at the interface between cavity and top DBR provides the confinement of the lateral modes. To rigorously simulate the physical phenomena taking place in the device we use a multi-physical model, which comprises three-dimensional models of optical (Plane Wave Admittance Method), thermal and electrical (Finite Element Method) phenomena. In the analysis we investigate the influence of the size of single and multiple emitters and the distance between the emitters in the case of the VCSEL arrays. As a result, we illustrate the complex competition of the modes and determine the geometrical parameters favoring specific array modes in the considered designs and compare the designs with respect to mode discrimination.
A self-consistent model of a GaAs-based 850 nm coupled-cavity vertical-cavity surface-emitting diode laser is presented. The analyzed laser consists of two identical AlGaAs cavities with GaAs quantum wells, separated with 10 pairs of middle DBR. The current apertures are realized by ion-implantation for the top cavity and selective oxidation for the bottom. To accurately simulate the physical phenomena present in the CW regime of the analyzed device, we use a multi-physical model, which comprises self-consistent Finite Element Method (FEM) thermo-electrical model. The numerical parameters have been found by the calibration based on experimental results. We have analyzed and shown the influence of the driving voltages on the temperature distribution within the analyzed structure and current densities in both cavities.
We present the optimization of the carrier injection, heat flow and optical confinement aimed at single mode operation in anti-guiding long-wavelength VCSEL arrays. The analyzed structure incorporates InP/AlGaInAs quantum wells within an InP cavity. The cavity is bounded by GaAs/AlGaAs DBRs. The tunnel junction is responsible for carrier funneling into the active region. The air-gap etched at the interface between cavity and top DBR provides the confinement of the lateral modes. To rigorously simulate the physical phenomena taking place in the device we use a multi-physical model, which comprises three-dimensional models of optical (Plane Wave Admittance Method), thermal and electrical (Finite Element Method) phenomena. We perform an exhaustive modal analysis of a 1x3 VCSEL arrays. In the analysis we investigate the influence of the size and the distance between the emitters. As the result we illustrate the complex competition of the modes and determine the geometrical parameters favoring specific array modes in the considered array designs.
Via experimental results supported by numerical modeling we report the energy-efficiency, bit rate, and modal properties of GaAs-based 980 nm vertical cavity surface emitting lasers (VCSELs). Using our newly established Principles for the design and operation of energy-efficient VCSELs as reported in the Invited paper by Moser et al. (SPIE 9001-02 ) [1] along with our high bit rate 980 nm VCSEL epitaxial designs that include a relatively large etalonto- quantum well gain-peak wavelength detuning of about 15 nm we demonstrate record error-free (bit error ratio below 10-12) data transmission performance of 38, 40, and 42 Gbit/s at 85, 75, and 25°C, respectively. At 38 Gbit/s in a back-toback test configuration from 45 to 85°C we demonstrate a record low and highly stable dissipated energy of only ~179 to 177 fJ per transmitted bit. We conclude that our 980 nm VCSELs are especially well suited for very-short-reach and ultra-short-reach optical interconnects where the data transmission distances are about 1 m or less, and about 10 mm or less, respectively.
In this paper we present results of computer optical simulations of VCSEL with modified high refractive index contrast grating (HCG) as a top mirror. We consider the HCG of two different designs which determine the lateral aperture. Such HCG mirror provides selective guiding effect. We show that proper design of aperture of HCG results in almost sixfold increase in cavity Q-factor for zero order mode and a discrimination of higher order modes.
We study theoretically the spectral and polarization threshold characteristics of Vertical-Cavity Surface-Emitting Lasers with nematic and cholesteric liquid crystal overlay: LC-VCSELs. In the first case, we demonstrate the possibility of selecting between two orthogonal directions of linear polarization (LP) of the fundamental mode (x or y LP) by choosing appropriate NLC length and to achieve strong polarization discrimination: threshold gain difference as large as several times the threshold gain. We also demonstrate an active control of light polarization by electro-optically tuning the LC director and show that either polarization switching between x and y LP modes or continuous change of the LP direction is possible. For cholesteric LC-VCSEL we show that it becomes a coupled system with different spectral, threshold and polarization characteristics than the ones of the stand-alone VCSEL. Due to the existence of a band gap for circularly polarized light in the liquid crystal, lasing occurs in almost circularly polarized modes at the LC side.
The introduction of a photonic-crystal to the VCSEL produces single mode emission in a very broad range of applied
currents. The mechanism responsible for the discrimination of high-order modes originates from two counter-acting
phenomena:
1) the PhC introduces lateral mode confinement through a strong waveguide effect and additionally by the Bragg
reflections from a regular net of PhC holes
2) the holes of the PhC destroy the vertical periodicity of the DBR and contribute to the selective reduction in reflectivity
of the mirror. As a result, the mode which overlaps the holes of the photonic crystal leaks through and becomes
discriminated.
We present numerical analysis of the influence of parameters of photonic crystal on the wavelength of emission, modal
gain, slope efficiency, emitted power and tuning range in single mode VCSELs. We recognise several mechanisms
determining high power emission in the single mode regime, which are: selective leakage, thermal focusing, waveguide
effect induced by the photonic-crystal, gain spectrum red shift and its maximum reduction with increase of driving
currents. We show that careful design of the photonic crystal allows for 10% increase in the emitted power of a singlemode
regime and it allows for broad range of the steering currents from 5 to 50 mA. Such attributes support tuning of the
single-mode emission over the 10 nm range of the spectrum.
In this work we show the analysis of high contrast vertical-cavity surface-emitting lasers (VCSEL) mirror with etched
photonic crystal, which provide the true photonic band-gap (PBG) for TE-like polarized light. We confirm that PBG is the
main light confinement mechanism by analyzing a low-index line-defect as well as a low-index cavity mode. In the latter
case we are able to obtain very high cavity Q-factor. Such PBG-VCSELs are compatible with the VCSEL technology and
do not require a complicated assembly of three-dimensional photonic crystals.
In the following paper a simulation of optically pumped vertical external cavity surface emitting lasers (VECSEL) with a
novel approach for the improvement of the heat management is presented. In recent VECSEL structures, it was common
to use one top diamond heat spreader in order to decrease the thermal resistance of the device by redistributing the heat
flow to the lateral regions and thus transporting heat down to the copper heat sink more efficiently. We present here
further improvement of the heat management by eliminating the bottom DBR from the heat flow path and substituting it
for a diamond with a High Contrast Grating (HCG). Hence the active region, which consists of 5 pairs of AlGaInAs
quaternary alloy quantum wells, is sandwiched between two diamond heat spreading layers.
The structure of Si HCG deposited on a diamond provides broad wavelength range in which reflectivity is close to 100%
for the emitted beam for perpendicular mode polarization with respect to the direction of the HCG trenches. The HCG
assures less than 20% reflection and near zero absorption of pumping light, hence it allows for on-axis bottom pumping
scheme and integration of the VECSEL with the pumping laser. According to the simulations 300 μm thick top diamond
heat spreader is enough to assure effective heat dissipation mechanism. Replacing the bottom DBR with the diamond
heat spreader will provide additional 10% reduction of the thermal impedance. The minimum of thermal impedance is
achieved for about 450 μm thick bottom diamond heat spreader.
We present the optimization of the carrier injection, heat flow and optical confinement aimed for single mode operation.
The analyzed structure incorporates InAlGaAs quantum wells within InP cavity. The cavity is bounded by AlGaAs/GaAs
DBRs The tunnel junction is responsible for carrier funneling into the active region. The air-gap etched at the interface
between cavity and top DBR provides the confinement of the lateral modes. To rigorously simulate the physical
phenomena taking place in the device we used multi-physical model, which comprises three-dimensional models of
optical (Plane Wave Admittance Method), thermal and electrical (Finite Element Method) phenomena.
We perform the exhaustive modal analysis of the 1x3, 1x4 and 2x4 VCSEL arrays. In the analysis we investigate the
influence of the distance between emitters. The analysis is performed for broad range of injected currents from threshold
to the rollover. As the result we illustrate the complex competition of the modes, influence of the optical confinement on
structure of the modes and determine the geometrical parameters, which favor the array modes in the considered array
designs.
A self-consistent pulse-operation model of an InP-based 1300-nm AlInGaAs vertical-cavity surface-emitting diode laser
with filled-photonic-crystal is presented. It is shown that low threshold characteristics and strong transverse-mode
discrimination can be simultaneously achieved for optimized photonic crystal structure for broad optical apertures.
We present a new three dimensional, fully vectorial optical modeling of oxide confined as well as shallow relief vertical-cavity surface-emitting laser. Our model is based on the combination of the plane wave expansion method with the method of lines resulting in a fast and accurate computational technique. We carry out hereby a comparison between the Plane Wave Admittance Method (PWAM) and other numerical approaches for VCSEL optical modeling and show very good agreement. Furthermore, this procedure makes it possible to find optimal basic computational parameters for the PWAM in the case of
VCSELs.
In this paper we present the application of a novel fully vectorial and three-dimensional computational method for planar devices to simulation of electromagnetic modes in classical and photonic-crystal-based VCSELs. We show the mathematical basis of the method and present results of computations of a resonant wavelength, optical losses, and a threshold gain of a classical arsenide VCSEL with oxide confinement and also of a purely photonic-crystal confined one. Furthermore we analyze the analytical reduction of computational domain to two dimensions in axisymmetric geometries with cylindrical-wave expansion, discuss the mathematical problems which occurs in such coordinates and suggest a method to overcome them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.