Some spectroscopic applications require excitation light sources with dual-wavelength laser emission. For example, in absorption spectroscopy one on-resonance and one off-resonance wavelength are needed for concentration measurements. For shifted excitation Raman difference spectroscopy (SERDS), two excitation wavelengths are used to distinguish between disturbing light and Raman signals. In both cases an adjustable wavelength spacing allows optimizing the measurements according to the spectral width of the target. In addition, a tuning of the spectral distance also allows generating a tunable sum or difference frequency signal, enabling further applications.
In this paper, diode lasers with customized designs according to the spectral requirements of the applications will be presented. As basis for all devices, Y-branch diode lasers with an integrated grating for wavelength stabilization are realized. The emission of the two branches is combined in an implemented Y-shaped coupler. The bent waveguides are sine shaped S-bends. The spectral tuning is performed via implemented heater elements next to the Distributed Bragg Reflector (DBR) gratings or via the injection current when using a Distributed Feedback (DFB) grating. Powervoltage current characteristics, spectral and tuning properties will be shown.
The devices emitting at 671 nm and 785 nm are used for SERDS, whereas devices at 965 nm were tested as seed sources for pulsed master oscillator power amplifiers (MOPA) suitable for the detection of water vapor. Devices at 785 nm are also suitable for the generation of THz radiation using difference frequency generation. A widely tunable Y-branch diode laser near 972 nm is used for the sum frequency generation in an up-conversion system.
Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system
In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm ⨯ 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M21/e2= 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only ± 0.16 % for the entire tuning range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.