The comet assay is a technique used to assess the DNA damage in individual cells. The extent of the damage is indicated by the ratio between the amount of DNA in the tail of the comet and the amount in the head. This assessment is typically made by the operator manually analyzing the images. This process is inefficient and time consuming. Researchers in the past have used machine learning techniques to automate this process but it required manual feature extraction. In some cases, deep learning was applied but only for damage classification. We have successfully applied Convolutional Neural Networks(CNN) to achieve automated quantification of DNA damage from comet images. Typically deep learning techniques such as CNN require large amounts of labelled training data, which may not always be available. We demonstrate that by applying deep transfer learning, state of the art results can be obtained in the detection of DNA damage, even with a limited number of comet images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.