We develop a continuously rotating achromatic half-wave plate (HWP) for LiteBIRD. An achromatic HWP is made of five-layer sapphire plates following a Pancharatnam design. The two surfaces employ broadband anti-reflection (AR) sub-wavelength structures (SWS) fabricated with ultra-short pulsed laser ablation. For designing AHWP with SWS, we fabricated three representative structures using laser ablation. One has a symmetric SWS shape and the other two have different asymmetric shapes in ordinary and extraordinary directions. We modeled five-layer AHWP with SWS based on fabricated shapes and numerically evaluated their transmittance, modulation efficiency, and phase of the modulated signal using the rigorous coupled-wave analysis (RCWA) method. We also added instrumental polarization (IP) as the figure-of-merit, which is a conversion of unpolarized to polarized light. IP creates an undesired modulated signal, which may cause a non-linear response in a bolometric detector. The typical cause of IP is the imperfection of AR SWS. From calculations, we did not find a significant difference in IP among the three cases. However, we found the impact on the modulation efficiency because the retardance depends on the SWS shapes. Furthermore, the retardance depends on frequency. We numerically analyzed the impact of the extra retardance from SWS on the overall AHWP performance. We show one of the three cases has the broadest modulation efficiency by compensating for the frequency dependence of the retardance from the SWS and the AHWP sapphire stacks.
We have developed a prototype half-wave plate (HWP) based polarization modulator (PMU) for Cosmic Microwave Background polarization measurement experiments. We built a 1/10 scaled PMU that consists of a 50 mm diameter five-layer achromatic HWP with a moth-eye broadband anti-reflection sub-wavelength structure mounted on a superconducting magnetic bearing. The entire system has cooled below 20 K in a cryostat chamber that has two millimeter-wave transparent windows. A coherent source and the diode detector are placed outside of the cryostat and the millimeter-wave goes through the PMU in the cryostat. We have measured the modulated signal by the PMU, analyzed the spectral signatures, and extracted the modulation efficiency over the frequency coverage of 34-161 GHz. We identified the peaks in the optical data, which are synchronous to the rotational frequency. We also identified the peaks that are originated from the resonance frequency of the levitating system. We also recovered the modulation efficiency as a function of the incident electromagnetic frequency and the data agrees to the predicted curves within uncertainties of the input parameters, i.e. the indices of refraction, thickness, and angle alignment. Finally, we discuss the implication of the results when this is applied to the LiteBIRD low-frequency telescope.
Sapphire, alumina, and silicon present the following characteristics that make them suitable as optical elements for millimeter and sub-millimeter applications: low-loss, high thermal conductivity at cryogenic temperatures, and high refractive index ~3. However, the high index also leads to high reflection. We developed a technique to machine sub-wavelength structures (SWS) as a broadband anti-reflection coating on these materials through laser ablation. We describe here the status of our development: transmission measurements of fabricated samples in a diameter of 34.5 mm agree with predictions, and we are now focusing on increasing the fabrication area with high processing rate. This is motivated by the need of ~500 mm diameter optical elements for the next-generation cosmic microwave background polarization experiments. We show our large area machining method on the alumina and sapphire over an area of < 5200 mm2 with the processing rate of < 4:0 mm3=min:, and the transmission measurements are consistent with the predictions.
We present a breadboard model development status of the polarization modulator unit (PMU) for a low-frequency telescope (LFT) of the LiteBIRD space mission. LiteBIRD is a next-generation cosmic microwave background polarization satellite to measure the primordial B-mode with the science goal of σr < 0.001. The baseline design of LiteBIRD consists of reflective low-frequency and refractive medium-and-high-frequency telescopes. Each telescope employs the PMU based on a continuous rotating half-wave plate (HWP) at the aperture. The PMU is a critical instrument for the LiteBIRD to achieve the science goal because it significantly suppresses 1/f noise and mitigates systematic uncertainties. The LiteBIRD LFT PMU consists of a broadband achromatic HWP and a cryogenic rotation mechanism. In this presentation, we discuss requirements, design and systematic studies of the PMU, and we report the development status of the broadband HWP and the space-compatible cryogenic rotation mechanism.
When a linearly polarized light wave propagates in a chiral medium, the polarization plane azimuth rotates
clockwise or counter-clockwise depending on the handedness of the material. This effect is called optical activity.
It can be observed in a number of crystals and organic liquids, however the rotatory power of chiral materials
available in nature is useally very small. That is why chiral planar micro- or nano-structures, which possess a
much stronger rotatory power than natural chrial media, have attracted a considerable attention in recent years.
We demonstrate large optical activity of chiral subwavelength gratings having no in-plane mirror symmetry and
fabricated with metal thin films. For zeroth-order transmitted light, the chirality of these gratings manifests itself
in the non-coplanarity of the electric field vectors at the air- and substrate-sides of the metal layer and can be
interpreted in terms of the surface pllasmon enhanced non-local
light-matter interaction. We demonstrate also
that in all-dielectric subwavelength chiral gratings, the optical activity can be enhanced even stronger by using
waveguide resonance. In the terahertz (THz) region, we obtain rotation of the polarization zimuth of a linearly
polarized THz wave by using double-layered metal chiral structure with complimentary patterns.
Planar chirality can lead to interesting polarization effects whose interpretation has invoked possible violation of reciprocity and time reversality. We show that a quasi-two-dimensional array consisting of gold nanoparticles with no symmetry plane and having sub-wavelength periodicity and thickness exhibits giant specific rotation (~104 °/mm) at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity manifests three-dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces of the structure. The structures thus enable nanoscale polarization control but violate no symmetry principle.
Spin dynamics in the III-V dilute magnetic semiconductor GaMnAs is investigated by photo-induced demagnetization. Experimental results obtained from two different time-dependent characterization techniques - "two color-probe" magneto-optical Kerr effect (TR-MOKE) and mid-infrared differential transmittance -- are compared. Upon photo-excitation with a 100 fs, 3.1 eV light pulse, a long demagnetization time in the hundreds of picoseconds timescale is found by TR-MOKE, indicating a spin-dependent band structure in this material. In mid-infrared measurements, a positive increase of the differential transmittance is observed in the same time interval when the sample is cooled below its Currie temperature. It is shown that this mid-infrared absorption feature is directly related to ferromagnetism in this material. The magnetism-related component of the broad DC mid-infrared absorption peak characteristic of this p-type material could be observed with this time-resolved measurement. Experimental results were simulated with a model describing the interaction between three thermal reservoirs (hole, spin and lattice) and taking thermal diffusion into account.
We present a comprehensive review of work on the Er3+-doped tellurite glass microsphere laser. We discuss the optical properties of Er3+-doped tellurite glass, including the emission cross section, the absorption cross section, and the lifetime analysis. Whispering-gallery modes in microspheres and fiber-taper coupling schemes are described, and theoretical analysis is performed for optimization. Finally, lasing characteristics such as the threshold, the lasing wavelength, and the temperature dependence of the microsphere laser are analyzed. Microsphere lasers with different Er2O3 doping concentrations have been fabricated and examined. A state-of-the-art L-band microsphere laser with 124.5-µW maximum output power is demonstrated. These miniature microsphere lasers have great potential and have attracted considerable attention because of their versatility for signal processing, fiber communication, and photon computation, as well as laser stabilization and sensing applications.
We report on the temperature dependence of L-band laser emission of fiber-taper-coupled Er3+-doped tellurite glass microsphere. Pumping at 1480 nm instead of 975nm was used to enhance the coupling efficiency, reduce the internal thermal effect, and increase the output laser emission. The microsphere laser emission threshold increased and the emitted laser wavelength shifted with temperature. The experimental results are explained with a quasi-four-level model, showing that a significant reduction of laser threshold can be achieved at lower temperatures and higher Q values of this microsphere laser.
A fiber-taper-coupled L-band microsphere laser was proposed and demonstrated. Er3+-doped tellurite glass was used to fabricate the microspheres. The microspheres were made by a novel spin method. The pump and emission light were coupled in and out of the microsphere modes with a tapered fiber. 975nm pumped L-band single/multi-mode microsphere lasers were demonstrated. The laser can be tuned in L-band. We call Er3+-doped microsphere laser as EDML.
Microstructure resonators have attracted considerable attention because of their versatility for signal processing applications. We use our Er3+ doped telluride glass to fabricate Er3+ glass microsphere. The excitation of whispering-gallery modes is realized by coupling from an angle-polished single-mode optical fiber tip to an optical microsphere cavity. In the experimental setup, one fiber was used as an input coupler and the other fiber was used as an output coupler. 975nm fiber pigtailed laser diode was used to side pump the microspheres. Very nice whispering-gallery modes (WGM's) near 1.5mm were observed successfully. Signal enhancement was observed in this Er3+ doped telluride glass microsphere with a radius around 50mm. The best enhancement of this Er3+ doped telluride glass microsphere reaches 12dB.
We discuss the optical whispering gallery modes in single and coupled spheres in the small size range. We study the emission from a dye doped polystyrene spheres with diameter ranging from 2 to 5 micrometers under quasi-steady state optical excitation. By studying the spectral characteristics of the emission of the individual 5 micrometers sphere, we observe the transition from spontaneous emission to lasing. Although the dye molecule linewidth is broader than the free spectral range of whispering-gallery modes for such a sphere, more than 30% of the spontaneous emission is emitted into the lasing mode. By monitoring the frequencies of fluorescence peaks of individual spheres, we sort out two spheres with appropriate size matching and make them in contact. We observe coherent resonator coupling of optical whispering- gallery modes in fluorescence from two-sphere system (bisphere). By taking into account harmonic coupling of the whispering-gallery modes, the obtained features of the normal mode splitting are well explained by the tight binding photon picture.
We report the observation of exciton blue shift in a DC- biased GaAS single quantum well with off-resonant pumping which is distinguished from the ac Stark shift by polarization selective pump probe spectroscopy with small detuning condition. This blue shift is interpreted as a result of internal field screening by virtual excitons.
We observed laser emission in whispering gallery modes using a microring composed of a light-emitting semiconducting polymer poly[2,5-bis-(2'-ethylhexyloxy)-p- phenylenevinylene] (BEH-PPV) coated on an etched fiber under transient and quasi steady-state pumping conditions. The threshold for laser oscillation was 1 mJ/cm2 (0.1 MW/cm2) and 30 (mu) J/cm2 (300 MW/cm2) for nanosecond and femtosecond excitation, respectively. The laser output showed superlinear dependence on the excitation energy above the threshold. The demonstration of lasing under quasi steady-state pumping shows the possibility to develop electrically pumped polymer lasers. Preliminary results on the line narrowing in tripheny dilamine (TPD) films under nanosecond optical pumping are also presented. 23
We study the emission properties of various laser cavities under pulsed optical excitation of the active semiconducting conjugated polymer material. Physical origin, magnitude, and dynamics of optical gain in these novel active laser materials are discussed leading to a selection of suitable cavity configurations for laser applications. We demonstrate laser action for various planar and ring resonator configurations that can be achieved in the regimes of transient inversion and quasi stationary excitation of the polymer material pumping with femtosecond and nanosecond pulses, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.