From 1991 until 1997, the 3.8m UK Infrared Telescope (UKIRT) underwent a programme of upgrades aimed at improving its intrinsic optical performance. This resulted in images with a FWHM of 0."17 at 2.2 μm in September 1998. To understand and maintain the improvements to the delivered image quality since the completion of the upgrades programme, we have regularly monitored the overall atmospheric seeing, as measured by radial displacements of supaperture images (i.e. seeing-generated focus fluctuations), and the delivered image diameters. The latter have been measured and recorded automatically since the beginning of 2001 whenever the facility imager UFTI (UKIRT Fast Track Imager) has been in use.
In this paper we report the results of these measurements. We investigate the relation between the delivered image diameter and the RMS atmospheric seeing (as measured by focus fluctuations, mentioned above). We find that the best seeing occurs in the second half of the night, generally after 2am HST and that the best seeing occurs in the summer between the months of July and September. We also find tha the relationship between Zrms and delivered image diameter is uncertain. As a result Zrmsfrequently predicts a larger FWHM than that measured in the images.
Finally, we show that there is no correlation between near-infrared seeing measured at UKIRT and sub-mm seeing measured at the Caltech Submillimetre Observatory (CSO).
KEYWORDS: Telescopes, Control systems, Gemini Observatory, Observatories, Data storage, Astronomy, Data acquisition, Java, Databases, Software development
The steady improvement in telescope performance at UKIRT and the increase in data acquisition rates led to a strong desired for an integrated observing framework that would meet the needs of future instrumentation, as well as providing some support for existing instrumentation. Thus the Observatory Reduction and Acquisition Control (ORAC) project was created in 1997 with the goals of improving the scientific productivity in the telescope, reducing the overall ongoing support requirements, and eventually supporting the use of more flexibly scheduled observing. The project was also expected to achieve this within a tight resource allocation. In October 1999 the ORAC system was commissioned at the United Kingdom Infrared Telescope.
For the past seven years observing with the major instruments at the United Kingdom IR Telescope (UKIRT) has been semi-automated, using ASCII files top configure the instruments and then sequence a series of exposures and telescope movements to acquire the data. For one instrument automatic data reduction completes the cycle. The emergence of recent software technologies has suggested an evolution of this successful system to provide a friendlier and more powerful interface to observing at UKIRT. The Observatory Reduction and Acquisition Control (ORAC) project is now underway to construct this system. A key aim of ORAC is to allow a more complete description of the observing program, including the target sources and the recipe that will be used to provide on-line data reduction. Remote observation preparation and submission will also be supported. In parallel the observatory control system will be upgraded to use these descriptions for more automatic observing, while retaining the 'classical' interactive observing mode. The final component of the project is an improved automatic data reduction system, allowing on-line reduction of data at the telescope while retaining the flexibility to cope with changing observing techniques and instruments. The user will also automatically be provided with the scripts used for the real-time reduction to help provide post-observing data reduction support. The overall project goal is to improve the scientific productivity of the telescope, but it should also reduce the overall ongoing support requirements, and has the eventual goal of supporting the use of queue- scheduled observing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.