SPIP is a near infrared (nIR) echelle spectropolarimeter and a high-precision velocimeter for the 2-m Telescope Bernard Lyot (TBL – Pic du Midi, France), a twin version of SPIRou, mounted at the 3.6-m Canada France Hawaii Telescope (CFHT - Maunakea, Hawaii). This new generation instrument aims at detecting planetary worlds and Earth-like planets orbiting nearby red dwarfs, and at studying the impact of stellar magnetic fields on the formation of low-mass stars and their planets. The cryogenic spectrograph, cooled down at 70 K, is a fiber-fed double-pass cross-dispersed echelle spectrograph, covering the YJHK spectral bands (0.95-2.5 µm) in a single exposure. Among the key instrument parameters, high resolving power (of 70k) and long-term thermal stability (at a level better than 1 mK) are mandatory to achieve a relative radial velocity precision of 1-2 m/s. The engineering team at OMP / IRAP in Toulouse (France) took up the challenge of adapting and improving the SPIRou concept for SPIP to become the logical complement of SPIRou, to be used on the largest telescope in France for most of the available observing time. In this paper, we describe the work performed on the design, integration and in-lab tests on the assembled instrument in Toulouse. An evolved design on the Cassegrain unit, a completely new version of the spectrograph thermal insulation, as well as a number of minor upgrades with respect to SPIRou, should allow SPIP to be even more precise, stable and efficient than SPIRou
SPIRou is an innovative near infra-red echelle spectropolarimeter and a high-precision velocimeter for the 3.6 m Canada-France-Hawaii Telescope (CFHT – Mauna Kea, Hawaii). This new generation instrument aims at detecting planetary worlds and Earth-like planets of nearby red dwarfs, in habitable zone, and studying the role of the stellar magnetic field during the process of low-mass stars / planets formation. The cryogenic spectrograph unit, cooled down at 80 K, is a fiber fed double-pass cross dispersed echelle spectrograph which works in the 0.98-2.40 μm wavelength range, allowing the coverage of the YJHK bands in a single exposure. Among the key parameters, a long-term thermal stability better than 2 mK, a relative radial velocity better than 1 m.s -1 and a spectral resolution of 70K are required. After ~ 1 year of assembly, integration and tests at IRAP/OMP (Toulouse, France) during 2016/2017, SPIRou was then shipped to Hawaii and completely re-integrated at CFHT during February 2018. A full instrument first light was performed on 24th of April 2018. The technical commissioning / science validation phase is in progress until June 2018, before opening to the science community. In this paper, we describe the work performed on integration and test of the opto-mechanical assemblies composing the spectrograph unit, firstly in-lab, in Toulouse and then on site, at CFHT. A review of the performances obtained in-lab (in 2017) and during the first on-sky results (in 2018) is also presented.
SPIRou is a near-IR (0.98-2.35μm) echelle spectropolarimeter / high precision velocimeter installed at the beginning of the year 2018 on the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii, with the main goal of detecting Earth-like planets around low mass stars and magnetic fields of forming stars. In this paper, the fiber links which connects the polarimeter unit to the cryogenic spectrograph unit (35 meter apart) are described. The pupil slicer which forms a slit compatible with the spectrograph entrance specifications is also discussed in this paper. Some challenging aspects are presented. In particular this paper will focus on the manufacturing of 35 meter fibers with a very low loss attenuation (< 13dB/km) in the non-usual fiber spectral domain from 0.98 μm to 2.35 μm. Other aspects as the scrambling performance of the fiber links to reach high accuracy radial velocity measurements (<1m/s) and the performances of the pupil slicer exposed at a cryogenic and vacuum environment will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.