SHARK-NIR is an instrument which provides direct imaging, coronagraphic imaging, dual band imaging and low resolution spectroscopy in Y, J and H bands, taking advantage of the outstanding performance of the Large Binocular Telescope AO systems. Binocular observations will be provided used in combination with SHARK-VIS (operating in V band) and LMIRCam of LBTI (operating from K to M bands), in a way to exploit coronagraphic simultaneous observations in three different wavelengths.
A wide variety of coronagraphic techniques have been implemented in SHARK-NIR, ranging from conventional ones such as the Gaussian Lyot, to others quite robust to misalignments such as the Shaped Pupil, to eventually techniques more demanding in term of stability during the observation, as the Four Quadrant; the latter is giving in theory and simulations outstanding contrast, and it is supported in term of stability by the SHARK-NIR internal fast tip-tilt loop and local NCPA correction, which should ensure the necessary stability allowing this technique to operate at its best.
The main science case is of course exoplanets search and characterization and young stellar systems, jets and disks characterization, although the LBT AO extreme performance, allowing to reach excellent correction even at very faint magnitudes, may open to science previously difficult to be achieved, as for example AGN and QSO morphological studies.
The institutes participating to the SHARK-NIR consortium which designed and built the instrument are Istituto Nazionale di Astro Fisica (INAF, Italy), the Max Planck Institute for Astronomy (MPIA, Heidelberg, Germany) and University of Arizona/Steward Observatory (UoA/SO, Tucson, Az, USA). We report here about the SHARK-NIR status, that should achieve first light at LBT before the end of 2022.Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT.
The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied.
Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral resolution ranging from few hundreds to few thousands. This article presents the current instrument design, together with the milestones for its installation at LBT.
I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers thickness, in the Z direction, and in drop-per-inch, in X and Y directions.
3D printing is also an easy and quick production technique, which can become useful in the ad-hoc realization of mechanical components for optical setups to be used in a laboratory for new concept studies and validation, reducing the manufacturing time. With this technique, indeed, it is possible to realize in few hours custom-made mechanical parts, without any specific knowledge and expertise in tool machinery, as long as the resolution and size are compliant with the requirements.
View contact details