BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.
Having delivered over 30,000 uncooled microbolometer based thermal imaging engines, BAE Systems is the world's leading producer. Advancements in technology include the demonstration of broadband microbolometers on a 46 μm pixel pitch which have excellent sensitivity in the MWIR (NETD ≈180 mK, 3-5 μm) and LWIR (NETD ≈ 15 mK, 8-12 μm) wavebands. Application advancements include the development of a family of thermal weapons sights for the military which will replace current cooled systems with lighter, lower power systems and the introduction of a new generation of handheld and pole mounted thermal imagers for commercial markets.
BAE Systems is the leading producer of uncooled microbolometer based thermal imaging engines in the world. Initial investments to develop and produce uncooled infrared (IR) technology were primarily driven by military applications, but it was the commercial market with the potential for large product volumes which provided BAE Systems with the business model required for investment in uncooled IR technology. This paper reviews the heritage of BAE Systems technology and current products and is an example of the success of a Dual-Use technology area which DARPA invested in during the 1990s.
This paper describes the inherent advantages of IR uncooled imagers in general, and the SCC500 in particular, for homeland defense. The SCC500 is a small, lightweight, low power, high performance uncooled imager that began production shipments in the spring of 2003. Key technologies described are dynamic range control, contrast enhancement and electronic zoom. Availability of these advanced features in production products are also described.
BAE Systems has made dramatic progress in uncooled microbolometer sensors and applications in the last year. The topics covered in this paper are: results and video from our latest 640x480 FPAs with sensitivities of better than 50 mK (f/1) and overviews of systems for military and commercial applications.
Uncooled microbolometer technology has shown dramatic improvements in recent years as tens of thousands of imaging systems have been delivered. This paper outlines the performance limits that must be overcome to continue to achieve performance improvements.
BAE SYSTEMS produces hundreds of low cost, high performance, uncooled IR imagers each month for use in commercial and military applications. The production process of each imager includes several steps that begin at the wafer level and end at an in-camera test. Each step is critical to end yield improvement by detecting failure at various stages in the production flow. Both automated test equipment and an integrated database system are essential at each phase to efficiently build and automatically configure cameras for each customer. This paper discusses the process and tools used to reliably test and ship uncooled thermal imagers in addition to specific methods and calculation techniques for characterizing key performance parameters such as Responsivity, Noise Equivalent Temperature Difference, and Operability.
BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.
Starting in the early 1990’s, BAE SYSTEMS began a significant investment in the development of MicroIR Uncooled Microbolometers. 160 x 120, 320 x 240, and 640 x 480 focal plane array (FPA) technology advances in both large pixel and small pixel format have driven Noise Equivalent Temperature Difference (NETD), power, size, weight, and price lower. These improvements have resulted in many new applications that previously could not afford larger, heavier, costlier cooled systems. While advancements in state of the art performance have been published regularly at Aerosense and other industry forums, far less has been discussed on the performance advances that have occurred as a result of volume manufacturing. This paper describes the improvements in performance that have been a result of BAE SYSTEMS leadership position in MicroIR microbolometer manufacturing. With over 15,000 units shipped through 2002, ranging from Standard Imaging Modules (SIM) to Standard Camera Cores (SCC) to complete imaging systems, the cumulative expertise gathered from this manufacturing experience over the past seven years has also pushed the state of the art system performance, in ways that single/small quantity technology demonstrators never could. Comparisons of temporal NETD, spatial NETD, dynamic range, operability, throughput, capacity, and other key metrics from early manufacturing lots to the present will be presented to demonstrate the advances that can only be achieved through volume manufacturing.
BAE SYSTEMS has been developing and producing uncooled microbolometer sensors since 1995. Recently, uncooled sensors have been used on Pointer Unattended Aerial Vehicles and considered for several unattended sensor applications including DARPA Micro-Internetted Unattended Ground Sensors (MIUGS), Army Modular Acoustic Imaging Sensors (MAIS), and Redeployable Unattended Ground Sensors (R-UGS). This paper describes recent breakthrough uncooled sensor performance at BAE SYSTEMS and how this improved performance has been applied to a new Standard Camera Core (SCC) that is ideal for these unattended applications. Video imagery from a BAE SYSTEMS 640x480 imaging camera flown in a Pointer UAV is provided. Recent performance results are also provided.
320×240 and 640×480 small pixel uncooled microbolometer focal plane arrays have been developed that reduce overall sensor size, weight, power consumption, and cost. At the same time, these sensors still provide the high quality image resolution needed for target recognition and identification. These newly developed small uncooled thermal imaging sensors are being demonstrated in several attended and unattended sensor applications that include Unattended Ground Sensors, Micro Air Vehicles, and Infrared Helmet Sights. This paper describes recent developments at BAE SYSTEMS in uncooled microbolometer sensor technology for unattended sensor applications and presents the latest performance and image data for our 2nd generation systems.
BAE SYSTEMS has designed and developed MicroIR microbolometer focal plane arrays (FPAs) in three formats (160x120, 320x240, and 640x480) and with two different pixel sizes (46micrometers and 28micrometers ). In addition to successfully demonstrating these FPA technologies, BAE SYSTEMS has produced and delivered thousands of 320x240 (46micrometers pixel) imaging modules and camera cores for military, thermography, firefighting, security and numerous other applications throughout the world. Recently, BAE SYSTEMS has started production deliveries of 160x120 (46micrometers ) systems, demonstrated 320x240 and 640x480 second-generation (28micrometers ) imaging, and demonstrated second-generation thermoelectric cooler-less operation. This paper discusses these recent accomplishments and, when possible, provides quantitative NETD and performance data for our newly developed FPAs and systems. Video will be shown to demonstrate sensor performance capabilities.
Uncooled microbolometer thermal imaging sensor technology has begun to successfully address military, government and commercial applications in the real world. BAE SYSTEMS, located in Lexington MA, has been involved in the design and development of uncooled IR technology since the early 1980s. Our current MicroIRTM products are based on vanadium oxide (VOx) microbolometers. Thousands of uncooled microbolometer thermal imaging sensors are now being produced and sold annually. A the same time, applied research and development on the technology continues to improve the basic products and make them suitable for new applications. In this paper we report on the status and improvements achieved in the MicroIRTM product line, based on 320 X 240 element and 160 X 120 element FPA's with 46 μm pixel pitch. Other near term MicroIRTM products include 320 X 240 and 640 X 480 FPA's with 28 micrometers pixel pitch and measured sensitivities below 50 mK. In the systems area we discuss development and testing of a Light Thermal Weapon Sight (LTWS) for the U.S. Army, being developed by BAE SYSTEMS in partnership with Thales, based upon our uncooled MicroIRTM focal plane arrays (FPA) and systems. The LTWS prototypes were based upon our Standard Imaging Module SIM200, which employs our LAM2C, 320 X 240 element, microbolometer FPA. Finally we discuss the 480 X 640 element FPA and its application to the Heavy Thermal Weapon Sight application.
Sanders IR Imaging Systems (IRIS), a Lockheed Martin Company, has made recent improvements in high performance uncooled IR focal plane arrays and systems. This paper provides performance results for three of these new FPAs and systems. First we discuss a new 320 X 240, 46 micrometer pitch FPA, which when put into a system with a transmission of 74%, will provide a system NETD of < 26 mK (F/0.8, 60 Hz). This FPA has a power of < 250 mW (which includes on-chip 14 bit analog to digital conversion), and virtually no crosstalk from saturation. Second, we discuss the first ever 640 X 480 element uncooled IR camera. This camera, which is based on a 28 micrometer pitch microbolometer staring FPA, produces a system sensitivity of < 150 mK, (F/1, 30 Hz) and has a Minimum Resolvable Temperature Difference of < 0.4 degrees Celsius at the Nyquist frequency. Finally, we have developed a new lightweight thermal weapons sight (TWS). Our TWS, which weighs < 3 lbs. (with battery) and operates over the -37 degrees Celsius to +49 degrees Celsius temperature range, has demonstrated a boresight retention of < 0.2 mrad after 1000's of rounds were fired.
KEYWORDS: Cameras, Microbolometers, Electronics, Camera shutters, Video, Digital signal processing, Video processing, Staring arrays, Readout integrated circuits, Simulation of CCA and DLA aggregates
Lockheed Martin is developing the first ever 640 X 480 uncooled microbolometer camera. This camera, designated the LTC650, has a new 28 micrometers pitch 640 X 480 microbolometer focal plane array and electronics which operate at a 30 Hz frame rate. The electronics are based on previous successful 320 X 240 camera electronics which use low power, high performance DSP and FPGA technology. A DSP based software solution provides flexibility to answer the challenge of change and varied customer needs while meeting the low cost, low power, and low real estate requirements of portable, hand held applications. Test data for the first camera are presented.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled IR imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the third of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees C is less than 0.5 percent. Our sensor typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK, with an instantaneous dynamic range of 84 dB, and a total dynamic range of 120 dB. MRTD performance is less than 0.4 degrees C at spatial frequencies more than 20 percent beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. Some of the multiple applications in which our uncooled sensor have been used have been described in reports demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric camera to driving aids; from long range surveillance cameras to miniature cameras; from rifle sights to helmet mounted camera. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the first of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured (and reported in multiple papers) to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. Some of the multiple applications in which our uncooled sensors have been used have just recently been described in one report demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric cameras to driving aids; from driver's aids to miniature cameras from rifle sights to radiometers. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the first of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured (and reported in multiple papers) to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. However, the multiple applications in which our uncooled sensors have been used have never been described in one report demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric cameras to driving aids; from sniper location prototype cameras to helmet mounted mine detection sensors; from rifle sights to space sensors. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here we report on the latest technical improvements and performance of an uncooled sensor as measured through laboratory and field testing. The performance of our uncooled sensor has been measured to determine sensor capabilities for insertion into both military and commercial products. Linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Sensor stability over time has been measured and found to meet both commercial and military requirements. Spatial noise over a wide scene temperature range is reported as well as other test results. Video is used to demonstrate sensor performance capabilities in a variety of applications.
Uncooled infrared imaging technology provides a new, affordable, high performance tool for both conventional and emerging applications in the surveillance and law enforcement markets. This technology offers users significant advantages, including high reliability, low power consumption, excellent image clarity, and good performance in adverse environments. This paper briefly discusses the various technologies used for night imaging, the advantages that infrared systems offer law enforcement and surveillance applications, how uncooled infrared systems fit into this market, and the status of uncooled microbolometer systems at Lockheed Martin.
Four types of transparent electrically conductive filters commonly used for a variety of applications are (1) a free-standing conducting inductive mesh, (2) a substrate coated with a conducting inductive mesh, (3) a conducting substrate, and (4) a substrate coated with a continuous conducting coating. Each can be designed to provide high visible, near infrared, and/or far infrared transmittance and high radio frequency (rf) and/or microwave attenuation. Theoretical models developed at Itek to predict the optical, rf, and electrical properties of each type of filter as a function of conductivity, relaxation time, electronic mobility, thickness, mesh period, and mesh line width are described. The temperature and angle of incidence dependence are also discussed. Simple expressions for predicting the performance of these four types of filters at both optical and rf frequencies provide both insight and useful starting designs.
There are currently four types of transparent electrically conductive filters available. These are
(1) a free-standing conducting inductive mesh,
(2) a substrate coated with a conducting inductive mesh,
(3) a conducting substrate,
and, (4) a substrate coated with a continuous conducting coating.
Each can be designed to provide high visible, near infrared, and/or far infrared transmittance and high radio frequency (RF) and microwave reflectance. Itek has developed theoretical models to predict the performance of each filter type at optical and very long wavelengths as a function of pertinent design features such as conductivity, electronic mobility, thickness, mesh period and line width. The temperature dependence is explicitly included. This paper presents Itek’s methods for predicting the performance of these four filter types at both optical and RF frequencies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.