Prostate ultrasound imaging has utilized B-mode, however recent success in 3D ultrasound tomography (3D-UT) in the presence of bone, indicate using it to augment other potentially harmful or expensive modalities in clinic. Several fresh whole prostates were excised/inserted into bespoke polyacrylamide gel phantoms within 30 minutes of prostatectomy and scanned in the QT imaging scanner. The speed of sound (SOS) map resulting from the 3D-UT was used to create the refraction corrected reflection image compounded over 360 degrees resulting in sub-mm resolution. Several lesions were correlated with rigid transformations via anatomic landmarks with clinical MRI and H&E stained whole sections by experts in MRI and whole sectioning. Lesions were pointed out all 3 modalities and compared for multiple lesions indicating proof of concept of unique visibility of prostate lesions in 3D-UT (also volography) ex-vivo.
Purpose: This study aims to investigate correlation of speed of sound (SoS) map with T2-weighted (T2w) MRI and pathology in an ex vivo human prostate tissue with cancer, as an early proof of concept towards cost effective augmented ultrasound diagnosis of prostate cancer. Method: A commercial breast full angle ultrasound tomography scanner was used to generate US tomography images. Prostate-specific Echolucent mold was fabricated to allow MRI and UST to be spatially correlated. Similarly, a 3D printed mold was developed to align the histology slices with the UST and MRI. The resulting slices of prostate tissue were H and E stained. A radiologist with 10 years of experience in using multi parametric MRI for prostate cancer diagnosis labeled and contoured the suspicious ROIs in both MRI and UST. For all tissue blocks (N=10 slices with 6 mm thickness), H and E slides were prepared and labeled by an expert pathologist. Results: The radiologist found two slices with prominent cancer in each modality (i.e. MR and UST) in the peripheral zone. These two pairs of slices correlated with each other and with slices #5 and #7 in pathology. The cancer ROIs were found at similar locations in all modalities, although MR and UST underestimated the size of lesions (Sørensen–Dice coefficients, with respect to pathology, for T2w and UST were 0.11 and 0.20 respectively for first ROI, and 0.33 and 0.27 for second ROI). The SoS was 1580.4±17.7 m/s and 1571.4±9.2 m/s for normal and cancer tissues in first ROI, and 1577.7±17.7 m/s and 1574.5±10.1 m/s for second ROI. Conclusions: SoS map can correlate with MRI and pathology findings in prostate cancer. Further ex vivo validation with fresh prostate tissue is warranted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.