Wide and ultrawide bandgap oxides, such as β-Ga2O3, ZnGa2O4 and Zn1-xGa2-2xGexO4, are of particular importance for a myriad of technological applications, including electronics, optoelectronics, and medical devices. In the case of the latter, the development of new, affordable and non-invasive methodologies for bioimaging and diagnosis is of crucial importance towards solutions that can improve health and wellbeing of the populations. For these purposes, red/near infrared emitters within the biological transparency window are required. Therefore, the here studied oxides were subjected to a controlled Cr-doping giving rise to intraionic emission in this region. In the case of the here studied oxide systems, we will investigate the intraionic luminescence properties of Cr3+, with particular emphasis on the persistent luminescence recorded in micro/nano particles of Cr-doped ZnGa2O4 and Zn1-xGa2-2xGexO4 synthesised by laser ablation in liquid media.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.