Neurodegenerative diseases such as Alzheimer’s disease present abnormalities in intraneuronal transport, suggesting the relevance of measuring this key biological process. In 2017, a sensitive method to measure changes in intraneuronal endosomal transport has been reported in 2D cultures of neurons using fluorescent nanodiamonds (fNDs) [1]. The high brightness, photostability and absence of cytotoxicity allow fNDs to be tracked with 50 nm spatial and 50 ms time resolutions.
This nanoparticle tracking based-approach applies also to multiphoton imaging, opening the possibility of transport measurement in vivo. We use nanocrystals possessing a large nonlinear second order optical response. First results indicate that the intraneuronal transport measurement can be inferred from nonlinear microscopy data, opening applications to thicker samples owing to the low background of multiphoton imaging. In order to get a high spatio-temporal resolution (around 10 nanometers at 1 ms), we are developing a two-photon microscope, based on a digital holography method [2]. A Digital Micromirror Device (DMD) is used as a spatial light modulator, allowing a fast 3D motion of the excitation volume. We aim at reaching a time resolution below the millisecond and super-localization regime in the tens nanometer range using orbital tracking.
References :
[1] S. Haziza, et al. Nat. Nanotechnol. 12 (2017), 322.
[2] Geng, Q., Gu, C., Cheng, J. & Chen, S. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica 4, 674 (2017)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.