In this study, we investigate the synergic use of polarimetric Synthetic Aperture Radar (SAR) decompositions and electromagnetic models for soil moisture retrieval over corn fields. The Generalized Freeman-Durden decomposition (GFD) is applied to a time-series of L-band full-polarimetric SAOCOM-1A data collected during the 2019 to 2020 growing season over an agricultural area. The scattering mechanisms (i.e., surface, double-bounce, and volume) derived from the decomposition are compared with the ones simulated using the Tor Vergata electromagnetic model. The goal of the work is to evaluate the capabilities of the GFD to consistently assign each scattered power to the corresponding scattering mechanism, so that the sensitivity to soil moisture and vegetation can be highlighted. Results point out significative discrepancies, especially for the volume term, while a good agreement is found for the double-bounce contribution. Differences are further confirmed when a simple linear regression model is applied to retrieve soil moisture using the GFD scattered powers or the model powers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.