KEYWORDS: Education and training, Machine learning, Evolutionary algorithms, Object detection, Data modeling, Object recognition, Neural networks, Detection and tracking algorithms, Deep learning, Process modeling
This article addresses the development of an intelligent military aircraft identification system using artificial intelligence, machine learning, and deep self-learning technologies to enhance national security and military efficiency. The system aims to automatically and accurately recognize and classify aircraft in images, offering advantages over traditional methods such as higher productivity, speed, accuracy, and the elimination of human error. The importance of deep learning solutions for threat detection and operational efficiency is emphasized. Modern visual data-based object recognition methods and tools are analysed. The methodology includes collecting and preprocessing data, developing a high-precision recognition system based on Yolov8, annotating objects with Roboflow, and creating training, validation, and testing subsets in the yolo format. The paper details the dataset formation process and presents satisfactory results in fast recognition of military aircraft with high classification accuracy. A comparative analysis of Yolov8, R-CNN, and GPT-4 models shows Yolov8's superiority in prediction accuracy and performance. The article describes the model management system for adjusting hyperparameters, selecting object categories, and initiating the training and forecasting process. Testing results demonstrate Yolov8's optimality for military aircraft identification, achieving accurate target identification in complex situations using advanced deep learning algorithms.
This article explores the innovative possibilities of Amazon Web Services (AWS) cloud computing for the calculation of complex optical fields. Complex optical fields are prevalent in various scientific and engineering applications, often posing significant computational challenges. By harnessing the scalability and resources of AWS, researchers and professionals can efficiently and cost-effectively address complex computations. This article discusses the advantages, possible solutions, and potential impact of utilizing AWS for tackling intricate mathematical problems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.