.We report the use of digital holographic microscopy to study harmonic evolution of dynamic deformation of two orthogonal modes of resonating piezoelectric MEMS mirror with a gimbal frame suspension. For the bending mode, the results show a linear relationship between dynamic deformation and the optical scan angle. For the torsional mode, a hysteretic behavior is observed, showing a significant difference depending on the scan direction. The difference was measured to be 45 nm, representing 18% of the total dynamic deformation of this mode. To investigate this effect, a point-by-point Fourier expansion method of the deformation cycle was employed and mechanical harmonics were extracted. From studying the first harmonic, we conclude that the origin of the hysteresis can be attributed to the phase difference in the oscillation of the two extrema points at the edge of the mirror, defining the peak-to-value deformation. In addition, higher-order harmonic terms (3rd and 5th) were identified and are affecting the hysteresis shape. Next, a modulation transfer function, corresponding to the measured angle-resolved dynamic deformation was estimated. Results show small contrast loss originating from the torsional mode, with an almost negligible effect of the hysteresis. The loss of contrast is dominated by the dynamic deformation of bending mode and was estimated to be 96% already at 0.18 normalized spatial frequency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.