Ionizing radiation acoustic imaging (iRAI) provides the potential to map the radiation dose during radiotherapy in real time. Described here is our recent development of an iRAI volumetric imaging system in mapping the three-dimensional (3D) radiation dose deposition of a complex clinical radiotherapy treatment plan. Temporal 3D dose accumulation of a treatment plan was first imaged in a phantom. Then, semi-quantitative iRAI measurements were verified with rabbit liver model in vivo. Finally, for the first time, real-time visualization of radiation dose delivered deep in a patient with liver metastases was successfully performed. These studies demonstrate the potential of iRAI to map the dose distribution in deep body during radiotherapy, potentially leading to personalized radiotherapy with optimal efficacy and safety.
We have previously developed a computerized decision support system for bladder cancer treatment response assessment (CDSS-T) in CT urography (CTU). In this work, we conducted an observer study to evaluate the diagnostic accuracy and intra-observer variability with and without the CDSS-T system. One hundred fifty-seven pre- and posttreatment lesion pairs were identified in pre- and post- chemotherapy CTU scans of 123 patients. Forty lesion pairs had T0 stage (complete response) after chemotherapy. Multi-disciplinary observers from 4 different institutions participated in reading the lesion pairs, including 5 abdominal radiologists, 4 radiology residents, 5 oncologists, 1 urologist, and 1 medical student. Each observer provided estimates of the T0 likelihood after treatment without and then with the CDSST aid for each lesion. To assess the intra-observer variability, 51 cases were evaluated two times – the original and the repeated evaluation. The average area under the curve (AUC) of 16 observers for estimation of T0 disease after treatment increased from 0.73 without CDSS-T to 0.77 with CDSS-T (p = 0.003). For the evaluation with CDSS-T, the average AUC performance for different institutions was similar. The performance with CDSS-T was improved significantly and the AUC standard deviations were slightly smaller showing potential trend of more accurate and uniform performance with CDSS-T. There was no significant difference between the original and repeated evaluation. This study demonstrated that our CDSS-T system has the potential to improve treatment response assessment of physicians from different specialties and institutions, and reduce the inter- and intra-observer variabilities of the assessments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.