S. Agayeva, V. Aivazyan, S. Alishov, M. Almualla, C. Andrade, Sarah Antier, J. M. Bai, A. Baransky, S. Basa, P. Bendjoya, Z. Benkhaldoun, S. Beradze, D. Berezin, U. Bhardwaj, M. Blazek, O. Burkhonov, E. Burns, S. Caudill, N. Christensen, F. Colas, A. Coleiro, W. Corradi, M. Coughlin, T. Culino, D. Darson, D. Datashvili, G. de Wasseige, T. Dietrich, F. Dolon, D. Dornic, J. Dubouil, J.-G. Ducoin, P.-A. Duverne, A. Esamdin, A. Fouad, F. Guo, V. Godunova, P. Gokuldass, N. Guessoum, E. Gurbanov, R. Hainich, E. Hasanov, P. Hello, T. Hussenot-Desenonges, R. Inasaridze, A. Iskandar, E.E.O. Ishida, N. Ismailov, T. Jegou du Laz, D.A. Kann, G. Kapanadze, S. Karpov, R.W. Kiendrebeogo, A. Klotz, N. Kochiashvili, A. Kaeouach, J.-P. Kneib, W. Kou, K. Kruiswijk, S. Lombardo, M. Lamoureux, N. Leroy, A. Le Van Su, J. Mao, M. Masek, T. Midavaine, A. Moeller, D. Morris, R. Natsvlishvili, F. Navarete, S. Nissanke, K. Noonan, K. Noysena, N.B. Orange, J. Peloton, M. Pilloix, T. Pradier, M. Prouza, G. Raaijmakers, Y. Rajabov, J.-P. Rivet, Y. Romanyuk, L. Rousselot, F. Ruenger, V. Rupchandani, T. Sadibekova, N. Sasaki, A. Simon, K. Smith, O. Sokoliuk, X. Song, A. Takey, Y. Tillayev, I. Tosta e Melo, D. Turpin, A. de Ugarte Postigo, M. Vardosanidze, X.F. Wang, D. Vernet, Z. Vidadi, J. Zhu, Y. Zhu
GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in 2019 − 2020 and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients.
GATOS (GTC Astrophysical Transient Octuple-channel imaging Spectrograph) is a multi-channel imager and spectrograph capable of simultaneously obtaining images of the same field in 8 optical and near-infrared bands or alternatively performing spectroscopy covering the range between 3500 and 23500 Angstrom in a single shot at a resolving power of R ∼ 4000. State-of-the-art detectors envisioned for this instrument will have negligible readout times and be able to perform high-time-resolution observations. An integral-field mode covering the same range simultaneously will be a crucial element of the design. In its current design, the integral-field unit covers a field of 12" × 8" with 0.6" slitlets. Finally, we aim to include a unique spectropolarimetry unit that will give GTC the first broad-band spectropolarimeter on a 10 m class telescope. The design is an evolution of the OCTOCAM concept that was selected to be built at Gemini, and is now known as SCORPIO.
KEYWORDS: Gamma radiation, Social networks, Geometrical optics, Databases, High energy astrophysics, Explosives, Aerospace engineering, Satellites, X-ray telescopes, Large telescopes
GRBSpec and GRBPhot are two databases designed for the storage and analysis of gamma-ray burst (GRB) data. GRBSpec is devoted to spectroscopic observations, GRBPhot to photometric data. Both databases have a detailed search engine and offer online graphical tools for plotting and data analysis. They aim to publicly share these specialised data among the astronomical community and provide quick online measurements and plots. The databases can be accessed through http://grbpsec.iaa.es and http://grbphot.iaa.es, respectively. As of November 2020, the database already contained 2013 files belonging to 810 spectra of 268 different GRBs.
Lobster eye X-ray optics in the one dimensional (1D) arrangement has advantages in higher reflectivity, especially for higher energies, compared to classical two dimensional (2D) Schmidt’s arrangement. One dimensional optics can determine only one direction of the incoming beam. There is placed a strip in front of the optics for determining of the second direction. This strip is made of X-ray proof material which blocks the incoming beam and thus causes a gap in the line. Based on these facts, it is possible to determine the position of each point source which has enough signal to gap ratio. Unfortunately, the intensity of sources is not possible to assess by this method.
A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.
The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.
This paper deals with evaluation and processing of astronomical image data, which are obtained by a wide-field all-sky image analyzing monitoring system (WILLIAM). The WILLIAM is an additional experimental camera for project MAIA equipped with wide field lens. The system can detect stellar objects as faint as 6th magnitude. Acquired image data are processed by an algorithm for stellar object detection and identification which is based on coordinates transfer function. Cartesian coordinates at the image data are transformed to horizontal coordinate system. This coordinate system allows searching in astronomical catalogues of stellar objects. This paper presents the components of WILLIAM, its measured electro-optical characteristics and some results of identification.
Additional monitoring equipment is commonly used in astronomical imaging. This electro-optical system usually complements the main telescope during acquisition of astronomical phenomena or supports its operation e.g. evaluating the weather conditions. Typically it is a wide-field imaging system, which consists of a digital camera equipped with fish-eye lens. The wide-field imaging system cannot be considered as a space-invariant because of space-variant nature of its input lens. In our previous research efforts we have focused on measurement and analysis of images obtained from the subsidiary all-sky monitor WILLIAM (WIde-field aLL-sky Images Analyzing Monitoring system). Space-variant part of this imaging system consists of input lens with 180 fi angle of view in horizontal and 154 fi in vertical direction. For a precise astronomical measurement over the entire field of view, it is very important to know how the optical aberrations affect characteristics of the imaging system, especially its PSF (Point Spread Function). Two methods were used for characterization of the space-variant PSF, i.e. measurement in the optical laboratory and estimation using acquired images and Zernike polynomials. Analysis of results obtained using these two methods is presented in the paper. Accuracy of astronomical measurements is also discussed while considering the space-variant PSF of the system.
Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe. They are produced during the collapse of massive stellar-sized objects, which create a black hole and eject material at ultra-relativistic speeds. They are unique tools to study the evolution of our Universe, as they are the only objects that, thanks to their extraordinary luminosity, can be observed during the complete history of star formation, from the era of reionisation to our days.
One of the main tools to obtain information from GRBs and their environment is optical and near-infrared spectroscopy. After 17 years of studies spectroscopic data for around 300 events that have been collected. However, spectra were obtained by many groups, at different observatories, and using instruments of very different types, making data difficult to access, process and compare.
Here we present GRBspec: A collaborative database that includes processed GRB spectra from multiple observatories and makes them available to the community. The website provides access to the datasets, allowing queries based not only on the observation characteristics but also on the properties of the GRB that was observed. Furthermore, the website provides visualisation and analysis tools, that allow the user to asses the quality of the data before downloading and even make data analysis online.
Most of the classical approaches to the measurement and modeling of electro-optical imaging systems rely on the principles of linearity and space invariance (LSI). In our previous research efforts we have focused on measurement and analysis of images obtained from a double station video observation system MAIA (Meteor Automatic Imager and Analyzer). The video acquisition module of this system contains wide-field input lens which contributes to space-variability of the imaging system. For a precise astronomical measurement over the entire field of view, it is very important to comprehend how the characteristics of the imaging system can affect astrometric and photometric outputs. This paper presents an analysis of how the space-variance of the imaging system can affect precision of astrometric and photometric results. This analysis is based on image data acquired in laboratory experiments and astronomical observations with the wide-field system. Methods for efficient calibration of this system to obtain precise astrometric and photometric measurements are also proposed.
Astronomers often need to put several pieces of equipment together and have to deploy them at a particular location.
This task could prove to be a really tough challenge, especially for distant observing facilities with intricate operating
conditions, poor communication infrastructure and unreliable power source. To have this task even more complicated,
they also expect secure and reliable operation in both attended and unattended mode, comfortable software with
user-friendly interface and full supervision over the observation site at all times.
During reconstruction of the D50 robotic telescope facility, we faced many of the issues mentioned above. To get rid of
them, we based our solution on a flexible group of hardware modules controlling the equipment of the observation site,
connected together by the Ethernet network and orchestrated by our management software. This approach is both
affordable and powerful enough to fulfill all of the observation requirements at the same time. We quickly figured out
that the outcome of this project could also be useful for other observation facilities, because they are probably facing the
same issues we have solved during our project.
In this contribution, we will point out the key features and benefits of the solution for observers. We will demonstrate
how the solution works at our observing location. We will also discuss typical management and maintenance scenarios
and how we have supported them in our solution. Finally, the overall architecture and technical aspects of the solution
will be presented and particular design and technology decisions will be clarified.
This article will present the use of wavelet transforms for image processing system of MAIA (Meteor Automatic Imager and Analyser). The main objective of these algorithms is the object detection with a high proportion of background noise and complicated imaging function. This noise is generated high brightness of the sky, an image intensifier and CCD sensor used. Analyzed images contain a large number of objects, which have dimensions of only a few pixels. In such cases, it is very difficult to use conventional methods of analysis images that are failing. Application of wavelet transform allows the use of specific features of image function and effectively detect objects.
This paper presents a study of possible utilization of digital single-lens reflex (DSLR) cameras in astronomy.
The DSLRs have a great advantage over the professional equipments in better cost efficiency with comparable
usability for selected purposes. The quality of electro-optical system in the DSLR camera determines the area
where it can be used with acceptable precision. At first a set of important camera parameters for astronomical
utilization is introduced in the paper. Color filter array (CFA) structure, demosaicing algorithm, image sensor
spectral properties, noise and transfer characteristics are the parameters that belong among the very important
ones and these are further analyzed in the paper. Compression of astronomical images using the KLT approach
is also described below. The potential impact of these parameters on position and photometric measurement
is presented based on the analysis and measurements with the wide-angle lens. The prospective utilization of
consumer DSLR camera as a substitute for expensive devices is discussed.
Efficient development of image processing techniques requires a database of suitable test images for verification of the
performance, optimization and other related purposes. In this paper, the DEIMOS, an open-source database, is described
including its structure and interface. There is a selected application example on high dynamic range content to illustrate
the database features. This HDR image database contains a variety of natural scenes captured with a digital single-lens
reflex camera (DSLR) under different conditions. The important capture parameters as well as the important
characteristics of the camera are part of the database to ensure that the creation of each image is well documented. The
DEIMOS database is created gradually step-by-step based upon the contributions of team members.
We present high precision intensity noise measurements of Quantum Dot Superluminescent LEDs and lasers
emitting at 1.3μm. For the QD-SLEDs we investigate the intensity noise behavior and identify the relevant
noise parameters by comparing the experimental results to theoretical calculations. We find an Excess Noise
behavior due to amplified spontaneous emission, the dominant origin of noise. The investigation of the spectrally
resolved emission enables further characterization of the noise properties. The influence of a resonator on the
noise behavior is discussed for QD-Lasers. The noise of the laser is compared to the SLED's, and shows strong
deviation from the Excess Noise character above threshold.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.