This study focus on the analysis of various plastic samples using the portable MEMS-FTIR spectrometer in both transmission and diffuse reflection modes operating at two resolutions of 10 nm and 16 nm. The analysis focuses on the mid-infrared region spanning from 2000 nm to 4600 nm. Many plastic samples have been differentiated such as Nylon, Polypropylene, Polystyrene, Acrylonitrile butadiene styrene, and colored High-Density Polyethylene. The results shows that transmission module is efficient for clear plastic samples sorting and diffused reflection module is efficient for opaque plastic samples sorting. The findings position the MEMS-FTIR spectrometer as a portable, cost-effective, and accurate solution for plastic analysis tasks, demonstrating versatility and potential advantages over traditional methods in the specified MIR range.
Diffused reflectance infrared spectroscopy is well known as a compact, low-cost, and efficient handheld spectrometers. One of the spectrometer’s most important optical parameters is the effective collected spot profile from diffuse reflection samples not the simple illumination spot which determines the analyzed sample portion defining the spatial resolution. In this work, we present a novel method for characterizing the spot size based on the Knife-Edge technique. A sharp high scattering material such as PTFE is displaced into the spectrometer optical interface on a 1-dimensional moving stage while capturing the power at each step. Then by differentiating this cumulative power, the intensity spot profile is obtained and fitted to a Gaussian profile where the spot size is defined as the diameter that contains 90% of the reflected power. MEMS FT-IR spectrometers with different spot sizes measured as a demonstration of the technique. Moreover, this method quantifies different other parameters such as Goodness of Fit, spot lateral shift in addition to spot shape wavelength dependence that may occurs due to any non-ideality in the spectrometer system.
Optical reflectors are essential components used in spectroscopy applications that require high-intensity and uniform sample illumination. Typically, reflector parameters such as curvature and dimensions are optimized to ensure efficient light direction from filament lamps to the sample under test. Elliptical reflectors are often used to collect all the light emitted from one focus and direct it to the other. However, the curvature of miniature reflectors can be challenging to evaluate using standard measurement tools and methods due to its high aspect ratio, which can present mechanical and optical limitations when trying to access and scan it. In this work, we report a characterization procedure to evaluate the different optical and dimensional parameters of a fabricated miniature elliptical reflector with a high aspect ratio of width to depth. We compare two fabrication methods, Plastic Molding, and Diamond Turning, to assess their effectiveness. The reflector's curvature is characterized using the negative shape filling method, where melted polymer is used to fill the reflector and allowed to cool until solidified, resulting in a negative convex shape of the reflector. The reflector's curvature is then calculated by fitting the shape to the appropriate elliptical function using image processing. This method shows good accuracy in evaluating the reflector's curvature. Furthermore, the reflector's optical performance and illumination spot are characterized by imaging the spot onto a target screen and detector, validating the good performance achieved with low-cost plastic molded reflectors compared to DT reflectors. The image quality and optical power identify surface roughness and coating quality, where the molded reflectors show better results compared to the DT reflector.
The conventional methods used for the diagnostics of viral infection are either expensive and time-consuming or not accurate enough and dependent on consumable reagents. In the presence of pandemics, a fast and reagent-free solution is needed for mass screening. Recently, the diagnosis of viral infections using infrared spectroscopy has been reported as a fast and low-cost method. In this work a fast and low-cost solution for corona viral detection using infrared spectroscopy based on a compact micro-electro-mechanical systems (MEMS) device and artificial intelligence (AI) suitable for mass deployment is presented. Among the different variants of the corona virus that can infect people, 229E is used in this study due to its low pathogeny. The MEMS ATR-FTIR device employs a 6 reflections ZnSe crystal interface working in the spectral range of 2200-7000 cm-1. The virus was propagated and maintained in a medium for long enough time then cell supernatant was collected and centrifuged. The supernatant was then transferred and titrated using plaque titration assay. Positive virus samples were prepared with a concentration of 105 PFU/mL. Positive and negative control samples were applied on the crystal surface, dried using a heating lamp and the spectrum was captured. Principal component analysis and logistic regression were used as simple AI techniques. A sensitivity of about 90 % and a specificity of about 80 % were obtained demonstrating the potential detection of the virus based on the MEMS FTIR device.
Free-space coupling of Gaussian light beams using flat and curved photonic microelectromechanical systems mirrors was analyzed in detail. The theoretical background and the non-ideal effects, such as limited micromirror extent, asymmetry in the curvature of spherical micromirrors, misaligned axes, and micromirror surface irregularities, were analyzed. The derived formulas were used to study and compare theoretically and experimentally the behavior of flat (one-dimensional), cylindrical (two-dimensional), and spherical (three-dimensional) micromirrors. The analysis focused on the regime of dimensions in which the curved micromirrors radius of curvature is comparable to the incident beam Rayleigh range, also corresponding to a reference spot size. A transfer matrix-based field and power coupling coefficients were derived for general micro-optical systems accounting for different matrix parameters in the tangential and sagittal planes of the microsystem taking into account the possible non-idealities. The results were presented in terms of normalized quantities such that the findings are general and can be applied to different situations. In addition, silicon micromirrors were fabricated with controlled shapes and used to experimentally analyze the coupling efficiency at the visible and near-infrared wavelengths.
In this work, we report a fast and efficient in-situ growth method of Zinc-Oxide nanowires (ZnO-NWs) and the real-time monitoring of NW growth over wide microfluidic chambers. The ZnO-NW hydrothermal synthesis is carried out in dynamic mode involving a continuous flow of the growth solution inside the microfluidic chamber. The biomimetic flow distribution tree is designed as input and output stages for the chamber to ensure uniform distribution of growth solution flow aiming to produce uniform NWs on the wide chamber. The real time monitoring is achieved by continuous acquisition of UV-vis spectra of the ZnO-NWs during the growth, which is achieved for the first time to the best of the author’s knowledge.
Air pollution is used to refer to the release of pollutants into the air, where these pollutants are harmful to the human health and our planet. The main source of these pollutants comes from energy production and consumption that release Volatile Organic Compounds (VOCs) such as BTEX and Aldehydes group. Real time monitoring of these VOCs in factories, stations, homes and in the street is important for analysis of the pollution sources fingerprint and for alerting, when exceeding the harmful limits. In this work we report the use of a MEMS FTIR spectrometer in the mid-infrared for this purpose. The spectrometer works in the wavelength range of 1.6 μm - 4.9 μm with a resolution down to 33 cm-1. This covers the absorption spectrum of water vapour, BTEX, Aldehydes and CO2 around 2.65 μm, 3.27 μm, 3.6 μm and 4.3 μm, respectively. The spectra of Toluene with different concentrations are measured, using a multipass gas cell with a physical length of 50 cm and an optical path length of 20 m, showing excellent sensor linearity. The minimum concentration measured is 350 ppb limited by the interference of the side lobes of the strong absorption of water vapour, which can be overcome in the future by humidity compensation. The SNR is measured and found to be 5000:1, corresponding to a detection limit of about 90 ppb. The achieved results open the door for a compact and low-cost solution targeting air pollution monitoring.
In this work, we report fast and efficient synthesis of ZnO-NWs in-situ within microfluidic chamber taking all the advantages of microfluidic devices. The growth done in dynamic mode involving flow of the growth solution inside the microchamber. Well-oriented ZnO-NWs are achieved in just 8-16 minutes in dynamic mode having similar properties to the synthesized NWs in 2-3 hours growth time using the static method. The morphology and optical properties of the ZnONWs characterized using SEM and UV-Vis spectroscopy. This method opens the door for fast, cheap and localized growth of NWs to be used within microfluidics platforms.
In this work, we propose a simple and time-saving method for the characterization of the ZnO-NWs. The method is based on the measurement of the spectral reflection of the ZnO-NWs in the UV-VIS-NIR ranges. Then the ZnO-NWs effective refractive index, and subsequently the density, and the length are obtained making use of the interference pattern contrast and periodicity in the reflection response versus wavelength. The extracted NWs length and density using the proposed method show good agreement with the SEM results. This characterization method opens the door for easy and cheap monitoring of the growth within microfluidic environment.
We have studied polluting gases in tobacco smoke by investigating the phenomenon of capturing and photocatalysis effects of ZnO nanowire array (NWA). Capturing and photocatalysis reactions were continuously tracked by FTIR spectroscopy. The presence of ZnO improves the capture rate at room temperature, while the photocatalytic reactions can lead to a further reduction of the pollutants. MEMS-FTIR spectrometer operating in the Mid-Infra-Red appeared as a very promising tool for the online monitoring of air purification process.
In this work, we report a novel notch optical filter based on the imaging properties of a MEMS-based Multimode Interference (MMI) waveguide. The concept is based on the dependence of the imaging lengths on the different wavelengths, where each wavelength exits the waveguide at a different lateral position. Thus, by properly choosing the output waveguide position, it is possible to have a good selective optical filter as well as a good notch optical filter (the complementary response). To validate this concept an MMI structure is fabricated using Deep Reactive Ion Etching (DRIE) technology on a silicon-on-insulator (SOI) wafer. The walls of the waveguide are metalized with Aluminum to decrease the insertion loss. The design makes use of the compactness of the parabolic butterfly shape to reduce the MMI length. The structure is fed by a 9/125 single-mode fiber and the Amplified Spontaneous Emission ASE out of a Semiconductor Optical Amplifier is used as a wideband source for the optical response characterization. The output is measured on an optical spectrum analyzer demonstrating a notch filter response around 1550 nm with about 20-dB rejection ratio. The reported results open the door for integrated, low-cost and fabrication insensitive optical MEMS notch filter.
In this work, we report the detection of C2H2 and CO2 in the NIR range using a MEMS Fourier Transform Infrared (FTIR) spectrometer. For this purpose, a super resolution autoregressive (AR) algorithm is used. The spectrometer is working in the wavelength range 1300–2500 nm while its core engine is a scanning Michelson interferometer micromachined using deep reactive ion etching (DRIE) technology on SOI wafer. The interferometer scanning mirror is driven by a MEMS electrostatic actuator with travel range corresponding to a resolution of about 30 cm-1.The spectrometer with the algorithm are used for measuring a standard optical filter with line width of 1 nm and measured line width is 1.7 nm that corresponds to 7.5 cm-1. The spectrum of a mixture of C2H2 and CO2 is measured using the MEMS spectrometer and a gas cell with 10cm light-gas interaction length. The AR model is applied on the interferogram. The resulting spectrum after the AR application shows an enhanced resolution of 15cm-1 that led to better identification of the absorption peaks.
In this work, we present a novel and simple optical solution for MEMS LiDARs. The idea is based on increasing the collection optics throughput by removing the MEMS mirror from the path of the collected light, while inserting a multi-segment tapered structure to collect the light from a wide angle. The tapered also converts the large size optical spot captured to a small area compatible with the requirement of low detector noise dimensions. The expected improvement in the collected power is analyzed versus the tapering angle of a single tapered structure. A multi-segment optical system, or multiple tapered structure arranged in parallel, is also introduced allowing for the optimization of the acceptance angle and the power improvement ratio. Using a 3-segment mirror, the expected improvement is about 15x with an acceptance angle of ±30 degrees. The design of a single element taper section is fabricated using aluminum-coated acrylic and tested experimentally showing an improvement of about 7x in the coupled power through an angle of ±10 degrees in good agreement with the theoretical expectations.
In this work, we report carbon dioxide gas sensing in the ambient air in the mid-infrared range around 4250 nm using MEMS FTIR spectrometer. The core engine of the spectrometer is a scanning Michelson interferometer fabricated using deep etching technology on silicon-on-insulator wafer. The measured Signal-to-Noise Ratio (SNR) is 24 dB at a wavelength of 4250 nm and the spectral resolution is about 60 cm-1. A free-space gas cell using CaF2 lenses with lightgas interaction lengths of 12 cm and 120 cm is demonstrated. The results demonstrate about 400 ppm concentration detection in the ambient air. The theoretical sensitivity limit based on the achieved SNR and resolution is about 15 ppm.
In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.