Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ ∼ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex ∼ 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.
We show that the surface properties of Au thin films on a glass prism, typical of the Krestchsmann setup for SPR generation, can be modified or tuned with optical exposure. The wetting properties of the film were investigated by measuring contact angles of water drops at room temperature T = 23 °C. These contact angle change with optical irradiation from below the film. This change corresponds to a maximum contact angle reduction of Δθc ~ 30° when a surface plasmon resonance (SPR) is excited. The variation in contact angle during drop evaporation is evaluated under different irradiation conditions.
The extrusion nozzles of three low cost desktop 3D printers are characterised using optical fibre Bragg gratings. Temperature profiles show remarkably consistent distributions pointing to operation as good quality micro-furnaces potentially not only for 3D printing but also optical fibre drawing.
A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.
We report the first optical fibre drawn from a 3D-printed preform. An air-structured polymer preform is printed using a modified butadiene plastic called Bendlay as opposed to the more-common Acrylonitrile Butadiene Styrene (ABS). The preform is subsequently drawn to fibre form at a relatively low temperature of 160 ⁰C and maintains its air-structured cladding holes. Such ability to freely-design and 3D-print complex preform structures, such as photonic bandgap and photonic crystal structures, opens up an exciting new front in optical fibre fabrication.
A self-powered smartphone-based field-portable “dual” spectrometer has been developed for both absorption and fluorescence measurements. The smartphone’s existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.
Using a smartphone-based portable spectrofluorimeter, measurement of metal ion concentration in water is reported. A UV LED (λex ~ 370 nm), which is powered by the internal source of the smartphone was implemented to function as the excitation source. The emission peak of the UV LED overlaps well with the absorption peak of the Zn2+-responsive molecular probe 6-(1,4,8,11-cyclam-1-yl)ethyl-1,2,3-triazol-4-yl)2-ethyl-naphthalimide fluoro-ionophore (λabs ~ 358 nm). The fluorescence emission of this dye at λem ~ 458 nm is enhanced upon coordination of Zn2+. A customized Android application digitally processes the image from a nano-imprinted polymer diffraction grating and analyses the spectral changes. Zn2+ concentration in water samples were measured with a detection limit of δ ~ 5 μM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.