In this paper, radiomic features are used to validate the textural realism of two anthropomorphic phantoms for digital mammography. One phantom was based off a computational breast model; it was 3D printed by CIRS (Computerized Imaging Reference Systems, Inc., Norfolk, VA) under license from the University of Pennsylvania. We investigate how the textural realism of this phantom compares against a phantom derived from an actual patient’s mammogram (“Rachel”, Gammex 169, Madison, WI). Images of each phantom were acquired at three kV in 1 kV increments using auto-time technique settings. Acquisitions at each technique setting were repeated twice, resulting in six images per phantom. In the raw (“FOR PROCESSING”) images, 341 features were calculated; i.e., gray-level histogram, co-occurrence, run length, fractal dimension, Gabor Wavelet, local binary pattern, Laws, and co-occurrence Laws features. Features were also calculated in a negative screening population. For each feature, the middle 95% of the clinical distribution was used to evaluate the textural realism of each phantom. A feature was considered realistic if all six measurements in the phantom were within the middle 95% of the clinical distribution. Otherwise, a feature was considered unrealistic. More features were actually found to be realistic by this definition in the CIRS phantom (305 out of 341 features or 89.44%) than in the phantom derived from a specific patient’s
Studies have shown that combining calculations of radiomic features with estimates of mammographic density results in an even better assessment of breast cancer risk than density alone. However, to ensure that risk assessment calculations are consistent across different imaging acquisition settings, it is important to identify features that are not overly sensitive to changes in these settings. In this study, digital mammography (DM) images of an anthropomorphic phantom (“Rachel”, Gammex 169, Madison, WI) were acquired at various technique settings. We varied kV and mAs, which control contrast and noise, respectively. DM images in women with negative screening exams were also analyzed. Radiomic features were calculated in the raw (“FOR PROCESSING”) DM images; i.e., grey-level histogram, co-occurrence, run length, fractal dimension, Gabor Wavelet, local binary pattern, Laws, and co-occurrence Laws features. For each feature, the range of variation across technique settings in phantom images was calculated. This range was scaled against the range of variation in the clinical distribution (specifically, the range corresponding to the middle 90% of the distribution). In order for a radiomic feature to be considered robust, this metric of imaging acquisition variation (IAV) should be as small as possible (approaching zero). An IAV threshold of 0.25 was proposed for the purpose of this study. Out of 341 features, 284 features (83%) met the threshold IAV ≤ 0.25. In conclusion, we have developed a method to identify robust radiomic features in DM.
Background: Lung cancer is one of the most common cancers in the United States and the most fatal, with 142,670 deaths in 2019. Accurately determining tumor response is critical to clinical treatment decisions, ultimately impacting patient survival. To better differentiate between non-small cell lung cancer (NSCLC) responders and non-responders to therapy, radiomic analysis is emerging as a promising approach to identify associated imaging features undetectable by the human eye. However, the plethora of variables extracted from an image may actually undermine the performance of computer-aided prognostic assessment, known as the curse of dimensionality. In the present study, we show that correlative-driven hierarchical clustering improves high-dimensional radiomics-based feature selection and dimensionality reduction, ultimately predicting overall survival in NSCLC patients. Methods: To select features for high-dimensional radiomics data, a correlation-incorporated hierarchical clustering algorithm automatically categorizes features into several groups. The truncation distance in the resulting dendrogram graph is used to control the categorization of the features, initiating low-rank dimensionality reduction in each cluster, and providing descriptive features for Cox proportional hazards (CPH)-based survival analysis. Using a publicly available non- NSCLC radiogenomic dataset of 204 patients’ CT images, 429 established radiomics features were extracted. Low-rank dimensionality reduction via principal component analysis (PCA) was employed (𝒌 = 𝟏, 𝒏 < 𝟏) to find the representative components of each cluster of features and calculate cluster robustness using the relative weighted consistency metric. Results: Hierarchical clustering categorized radiomic features into several groups without primary initialization of cluster numbers using the correlation distance metric (as a function) to truncate the resulting dendrogram into different distances. The dimensionality was reduced from 429 to 67 features (for truncation distance of 0.1). The robustness within the features in clusters was varied from -1.12 to -30.02 for truncation distances of 0.1 to 1.8, respectively, which indicated that the robustness decreases with increasing truncation distance when smaller number of feature classes (i.e., clusters) are selected. The best multivariate CPH survival model had a C-statistic of 0.71 for truncation distance of 0.1, outperforming conventional PCA approaches by 0.04, even when the same number of principal components was considered for feature dimensionality. Conclusions: Correlative hierarchical clustering algorithm truncation distance is directly associated with robustness of the clusters of features selected and can effectively reduce feature dimensionality while improving outcome prediction.
With the advent of regular breast screening, ductal carcinoma in situ (DCIS) diagnoses have risen in number, now making up almost 20% of all detected breast cancers at screening. Women diagnosed with DCIS are almost universally treated. However, recent studies suggest that up to 70% of DCIS lesions will never become life-threatening, which emphasizes the need for better risk stratification strategies. Considering that histopathologic features have been shown to be predictive of DCIS aggressiveness, our aim was to study associations between DCIS histopathologic features and mammographic phenotypes towards identifying readily-available mammography-based prognostic biomarkers. To this end, breast density and parenchymal texture features were extracted from screening digital mammograms and principal component analysis was used to capture the dominant textural components. Primary analyses included statistical tests to compare feature distributions between histopathologic subgroups. Logistic regression models were, then, applied to evaluate trends in DCIS histopathologic characteristics among mammographic features, after adjustment for risk factors known to affect mammographic phenotypes. We found that HER2 had a significant association with breast percent density (p = 0.006) and the first principal component (PC1) of texture features (p = 0.034). Our risk-factor-adjusted logistic regression analyses showed that breast percent density was predictive of HER2 status (AUC = 0.71), while prediction performance was further increased when PC1 was added to the model (AUC = 0.74). These findings provide preliminary evidence about the potential value of mammographic phenotypes in prediction of DCIS aggressiveness and could ultimately contribute to identifying patients who do not require treatment.
In this paper, texture calculations are used to validate the realism of a physical anthropomorphic phantom for digital breast tomosynthesis. The texture features were compared against clinical mammography data. Three groups of features (grey-level histogram, co-occurrence, and run-length) were considered. The features were analyzed over a broad range of technique settings (kV and mAs). These calculations were done in the central slice of the reconstruction as well as the synthetic 2D mammogram. For each feature, the clinical data were binned into strata based on the compressed breast thickness. It was demonstrated that the clinical features vary by thickness. To evaluate the realism of the phantom, each feature was compared against clinical data in the same thickness stratum. For the purpose of this paper, a feature was considered to be realistic if it was within the middle 95% of the statistical distribution of clinical values. In the reconstruction, most features were found to exhibit realism; specifically, all 12 grey-level histogram features, four out of seven co-occurrence features, and three out of seven run-length features. The realism of most features was robust to changes in the technique settings. However, in the synthetic 2D mammogram, fewer features were found to exhibit realism. In conclusion, this paper provides a validation of the textural realism of the phantom in the reconstruction, and shows that there is less realism in the synthetic 2D mammogram. We identify the features that should be considered to refine the design of the phantom in future work.
The relative amount of fibroglandular tissue (FGT) in the breast has been shown to be a risk factor for breast cancer. However, automatic segmentation of FGT in breast MRI is challenging due mainly to its wide variation in anatomy (e.g., amount, location and pattern, etc.), and various imaging artifacts especially the prevalent bias-field artifact. Motivated by a previous work demonstrating improved FGT segmentation with 2-D a priori likelihood atlas, we propose a machine learning-based framework using 3-D FGT context. The framework uses features specifically defined with respect to the breast anatomy to capture spatially varying likelihood of FGT, and allows (a) intuitive standardization across breasts of different sizes and shapes, and (b) easy incorporation of additional information helpful to the segmentation (e.g., texture). Extended from the concept of 2-D atlas, our framework not only captures spatial likelihood of FGT in 3-D context, but also broadens its applicability to both sagittal and axial breast MRI rather than being limited to the plane in which the 2-D atlas is constructed. Experimental results showed improved segmentation accuracy over the 2-D atlas method, and demonstrated further improvement by incorporating well-established texture descriptors.
Mammographic density is an established risk factor for breast cancer. However, area-based density (ABD) measured in 2D mammograms consider the projection, rather than the actual volume of dense tissue which may be an important limitation. With the increasing utilization of digital breast tomosynthesis (DBT) in screening, there’s an opportunity to routinely estimate volumetric breast density (VBD). In this study, we investigate associations between DBT-VBD and ABD extracted from standard-dose mammography (DM) and synthetic 2D digital mammography (sDM) increasingly replacing DM. We retrospectively analyzed bilateral imaging data from a random sample of 1000 women, acquired over a transitional period at our institution when all women had DBT, sDM and DM acquired as part of their routine breast screening. For each exam, ABD was measured in DM and sDM images with the publicly available “LIBRA” software, while DBT-VBD was measured using a previously validated, fully-automated computer algorithm. Spearman correlation (r) was used to compare VBD to ABD measurements. For each density measure, we also estimated the within woman intraclass correlation (ICC) and finally, to compare to clinical assessments, we performed analysis of variance (ANOVA) to evaluate the variation to the assigned clinical BI-RADS breast density category for each woman. DBT-VBD was moderately correlated to ABD from DM (r=0.70) and sDM (r=0.66). All density measures had strong bilateral symmetry (ICC = [0.85, 0.95]), but were significantly different across BI-RADS density categories (ANOVA, p<0.001). Our results contribute to further elaborating the clinical implications of breast density measures estimated with DBT which may better capture the volumetric amount of dense tissue within the breast than area-based measures and visual assessment.
We examined the ability of DCE-MRI longitudinal features to give early prediction of recurrence-free survival (RFS) in women undergoing neoadjuvant chemotherapy for breast cancer, in a retrospective analysis of 106 women from the ISPY 1 cohort. These features were based on the voxel-wise changes seen in registered images taken before treatment and after the first round of chemotherapy. We computed the transformation field using a robust deformable image registration technique to match breast images from these two visits. Using the deformation field, parametric response maps (PRM) — a voxel-based feature analysis of longitudinal changes in images between visits — was computed for maps of four kinetic features (signal enhancement ratio, peak enhancement, and wash-in/wash-out slopes). A two-level discrete wavelet transform was applied to these PRMs to extract heterogeneity information about tumor change between visits. To estimate survival, a Cox proportional hazard model was applied with the C statistic as the measure of success in predicting RFS. The best PRM feature (as determined by C statistic in univariable analysis) was determined for each of the four kinetic features. The baseline model, incorporating functional tumor volume, age, race, and hormone response status, had a C statistic of 0.70 in predicting RFS. The model augmented with the four PRM features had a C statistic of 0.76. Thus, our results suggest that adding information on the texture of voxel-level changes in tumor kinetic response between registered images of first and second visits could improve early RFS prediction in breast cancer after neoadjuvant chemotherapy.
The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.
Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women’s cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.
We assess the feasibility of a parenchymal texture feature fusion approach, utilizing a convolutional neural network (ConvNet) architecture, to benefit breast cancer risk assessment. Hypothesizing that by capturing sparse, subtle interactions between localized motifs present in two-dimensional texture feature maps derived from mammographic images, a multitude of texture feature descriptors can be optimally reduced to five meta-features capable of serving as a basis on which a linear classifier, such as logistic regression, can efficiently assess breast cancer risk. We combine this methodology with our previously validated lattice-based strategy for parenchymal texture analysis and we evaluate the feasibility of this approach in a case-control study with 424 digital mammograms. In a randomized split-sample setting, we optimize our framework in training/validation sets (N=300) and evaluate its descriminatory performance in an independent test set (N=124). The discriminatory capacity is assessed in terms of the the area under the curve (AUC) of the receiver operator characteristic (ROC). The resulting meta-features exhibited strong classification capability in the test dataset (AUC = 0.90), outperforming conventional, non-fused, texture analysis which previously resulted in an AUC=0.85 on the same case-control dataset. Our results suggest that informative interactions between localized motifs exist and can be extracted and summarized via a fairly simple ConvNet architecture.
KEYWORDS: Image segmentation, Breast, Magnetic resonance imaging, 3D image processing, 3D modeling, Mammography, Chest, Visual process modeling, Quantitative analysis, Breast cancer
Whole breast segmentation is the first step in quantitative analysis of breast MR images. This task is challenging due mainly to the chest-wall line’s (CWL) spatially varying appearance and nearby distracting structures, both being complex. In this paper, we propose an automatic three-dimensional (3-D) segmentation method of whole breast in sagittal MR images. This method distinguishes itself from others in two main aspects. First, it reformulates the challenging problem of CWL localization into an equivalence that searches for an optimal smooth depth field and so fully utilizes the 3-D continuity of the CWLs. Second, it employs a localized self- adapting algorithm to adjust to the CWL’s spatial variation. Experimental results on real patient data with expert-outlined ground truth show that the proposed method can segment breasts accurately and reliably, and that its segmentation is superior to that of previously established methods.
Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman’s risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women’s cancer risk evaluation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.