Machine learning (ML) is becoming a ubiquitous and powerful tool helping to address challenges in countless fields. Applications of ML addressing optics challenges have been extensively studied in recent years opening up new research directions. In particular, here, we review some of our current efforts and provide examples of successful applications of ML to the characterization of photonic devices, design, and modeling of optical subsystems, and complete end-to-end optical system optimization. ML and statistical tools can yield additional insight from measurement data, e.g. by targeted filtering of noise sources. They have also been shown to assist complex or inaccurate physics-based models through black and grey-box modeling of photonics components or subsystems. Such ML-aided models have enabled easier optimization and design (including inverse design) of optical systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.