This study aims to advance the field of composite material fatigue prognosis by employing Long Short-Term Memory (LSTM) neural networks for in-situ damage progression monitoring under random dynamic loading conditions. A unique approach is adopted, wherein Laser-Induced Graphene (LIG) interlayers are embedded into fiberglass composites. These LIG interlayers are innovative sensors owing to their piezoresistive properties, enabling real-time measurement of fatigue damage monitoring. The crux of this research lies in applying LSTM neural networks, specifically designed to handle time-series data, making them ideal for modeling the stochastic and unpredictable nature of fatigue loading in composite materials. Contrasting the performance of LSTM with traditional Multilayer Perceptrons (MLP), it is observed that LSTM yields superior prediction accuracy in estimating the remaining useful life (RUL) of LIG interlayered fiberglass composites. By utilizing predefined electrical resistance damage parameters, the LSTM algorithm correlates the rate of fatigue damage buildup to the impending decline in mechanical performance. This research establishes that integrating piezoresistive LIG interlayers with LSTM neural networks culminates in a robust, reliable, and closed-loop system for structural fatigue monitoring and lifecycle prediction in composite materials subjected to random dynamic loading.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.