Second messenger signals, e.g., Ca2+ and cyclic nucleotides, orchestrate a wide range of cellular events. The methods by which second messenger signals determine specific physiological responses are complex. Recent studies point to the importance of temporal and spatial encoding in determining signal specificity. Studies also indicate the importance of mechanical stimuli, substrate stiffness, and mechanical responses–the “mechanosome”–in regulating physiology. Hence, approaches that probe both chemical and mechanical signals are needed. Here, we report preliminary efforts to combine hyperspectral imaging for second messenger signal measurements, monolayer stress microscopy for mechanical force measurements, and S8 analysis software for quantifying localized signals–specifically, Ca2+ dynamics and mechanical forces in human airway smooth muscle cells (HASMCs). HASMCs were prepared as confluent monolayers on 11 kPa gels with embedded fluorescent microparticles that serve as fiducial markers as well as smaller microparticles to measure deformation (strain). Imaging was performed using a custom excitation-scanning hyperspectral microscope. Hyperspectral images were unmixed to identify signals from cellular fluorescent labels (e.g., CAL 590-AM) and fluorescent microparticles. Images were analyzed to quantify localized force dynamics through monolayer stress microscopy. S8 software was used to identify, track, and quantify spatially-localized Ca2+ activity. Results indicate that localized and transient cellular signals and forces can be quantified and mapped within cell populations. Importantly, these results establish a method for simultaneous interrogation of cellular signals and mechanical forces that may play synergistic roles in regulating downstream cellular physiology in confluent monolayers. This work was supported by NIH P01HL066299, R01HL137030, R01HL058506, and NSF MRI1725937. Drs. Leavesley and Rich disclose financial interest in a university start-up company, SpectraCyte LLC, to commercialize spectral imaging technologies.
Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations. To overcome this limitation, we utilized excitation scan-based hyperspectral imaging approaches to track second messenger signals as well as labeled cellular structures and/or proteins in the same cell. We have previously reported that hyperspectral imaging techniques improve the signal-to-noise ratios of both fluorescence measurements, and are thus well suited for the measurement of localized Ca2+ signals. We investigated the spatial spread and intensities of agonist-induced Ca2+ signals in primary human airway smooth muscle cells (HASMCs) using the Ca2+ indicator Cal520. We measured responses triggered by three agonists, carbachol, histamine, and chloroquine. We utilized custom software coded in MATLAB and Python to assess agonist induced changes in Ca2+ levels. Software algorithms removed the background and applied correction coefficients to spectral data prior to linear unmixing, spatial and temporal filtering, adaptive thresholding, and automated region of interest (ROI) detection. All three agonists triggered transient Ca2+ responses that were spatially and temporally complex. We are currently analyzing differences in both ROI area and intensity distributions triggered by these agonists.
Studies of the cAMP signaling pathway have led to the hypothesis that localized cAMP signals regulate distinct cellular
responses. Much of this work focused on measurement of localized cAMP signals using cAMP sensors based upon Fӧrster
resonance energy transfer (FRET). FRET-based probes are comprised of a cAMP binding domain sandwiched between
donor and acceptor fluorophores. Binding of cAMP triggers a conformational change which alters FRET efficiency. In
order to study localized cAMP signals, investigators have targeted FRET probes to distinct subcellular domains. This
approach allows detection of cAMP signals at distinct subcellular locations. However, these approaches do not measure
localized cAMP signals per se, rather they measure cAMP signals at specific locations and typically averaged throughout
the cell. To address these concerns, our group implemented hyperspectral imaging approaches for measuring highly
multiplexed signals in cells and tissues. We have combined these approaches with custom analysis software implemented
in MATLAB and Python. Images were filtered both spatially and temporally, prior to adaptive thresholding (OTSU) to
detect cAMP signals. These approaches were used to interrogate the distributions of isoproterenol and prostaglandin triggered
cAMP signals in human airway smooth muscle cells (HASMCs). Results demonstrate that cAMP signals are
spatially and temporally complex. We observed that isoproterenol- and prostaglandin-induced cAMP signals are triggered
at the plasma membrane and in the cytosolic space. We are currently implementing analysis approaches to better quantify
and visualize the complex distributions of cAMP signals.
Cyclic AMP (cAMP) is a second messenger that regulates a wide variety of cellular functions. There is increasing evidence suggesting that signaling specificity is due in part to cAMP compartmentalization. In the last 15 years, development of cAMP-specific Förster resonance energy transfer (FRET) probes have allowed us to visualize spatial distributions of intracellular cAMP signals. The use of FRET-based sensors is not without its limitations, as FRET probes display low signal to noise ratio (SNR). Hyperspectral imaging and analysis approaches have, in part, allowed us to overcome these limitations by improving the SNR of FRET measurements. Here we demonstrate that the combination of hyperspectral imaging approaches, linear unmixing, and adaptive thresholding allow us to visualize regions of elevated cAMP (regions of interest – ROIs) in an unbiased manner. We transfected cDNA encoding the H188 FRET-based cAMP probe into pulmonary microvascular endothelial cells. Application of isoproterenol and prostaglandin E1 (PGE1) triggered complex cAMP responses. Spatial and temporal aspects of cAMP responses were quantified using an adaptive thresholding approach and compared between agonist treatment groups. Our data indicate that both the origination sites and spatial/temporal distributions of cAMP signals are agonist dependent in PMVECs. We are currently analyzing the data in order to better quantify the distribution of cAMP signals triggered by different agonists.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.