In this work we investigate the image denoising problem. One common approach found in the literature involves manipulating the coefficients in the transform domain, e.g. shrinkage, followed by the inverse transform. Several advanced methods that model the inter-coefficient dependencies were developed recently, and were shown to
yield significant improvement. However, these methods operate on the transform domain error rather than on the image domain one. These errors are in general entirely different for redundant transforms. In this work we propose a novel denoising method, based on the Basis-Pursuit Denoising (BPDN). Our method combines the image domain error with the transform domain dependency structure, resulting in a general objective function, applicable for any wavelet-like transform. We focus here on the Contourlet Transform (CT) and on a redundant version of it, both relatively new transforms designed to sparsely represent images. The performance of our new method is compared favorably with the state-of-the-art method of Bayesian Least Squares Gaussian Scale Mixture (BLS-GSM), which we adapted to the CT as well, with further improvements still to come.
We consider the problem of recovery of a scene recorded through a semirefective medium from its mixture with a virtual reflected image using the blind source separation (BSS) framework. We extend the Sparse ICA (SPICA) approach and apply it to the separation of the desired image from the superimposed images, without having any a priory knowledge about its structure and/or statistics. Advances in the SPICA approach are discussed. Simulations and experimental results illustrate the efficiency of the proposed approach, and of its specific implementation in a simple algorithm of a low computational cost. The approach and the algorithm are generic and can be adapted and applied to a wide range of BSS problems involving one-dimensional signals or images.
We study a relative optimization framework for the quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. Convergence of the Newton method is stabilized by the line search and by the modification of the Hessian, which forces its positive definiteness. The structure of the Hessian allows fast approximate inversion. In order to separate sparse sources, we use a non-linearity based on smooth approximation to the absolute value function. Sequential optimization with the gradual reduction of the smoothing parameter leads to the super-efficient separation.
It was previously shown that sparse representations can improve and simplify the estimation of an unknown mixing matrix of a set of images and thereby improve the quality of separation of source images. Here we propose a multiscale approach to the problem of blind separation of images from a set of their mixtures. We take advantage of the properties of multiscale transforms such as wavelet packets and decompose signals and images according to sets of local features. The resulting partial representations on a tree of data structure depict various degrees of sparsity. We show how the separation error is affected by the sparsity of the decomposition coefficients, and by the misfit between the prior, formulated in accordance with the probabilistic model of the coefficients' distribution, and the actual distribution of the coefficients. Our error estimator, based on the Taylor expansion of the quasi Log-Likelihood function, is used in selection of the best subsets of coefficients, utilized in turn for further separation. The performance of the proposed method is assessed by separation of noise-free and noisy data. Experiments with simulated and real signals and images demonstrate significant improvement of separation quality over previously reported results.
It was previously shown that sparse representations can improve and simplify the estimation of an unknown mixing matrix of a set of images and thereby improve the quality of separation of source images. Here we propose a multiscale approach to the problem of blind separation of images from a set of their mixtures. We take advantage of the properties of multiscale transforms such as wavelet packets and decompose signals and images according to sets of local features. The resulting partial representations on a tree of data structure depict various degrees of sparsity. We show how the separation error is affected by the sparsity of the decomposition coefficients, and by the misfit between the prior, formulated in accordance with the probabilistic model of the coefficients' distribution, and the
actual distribution of the coefficients. Our error estimator, based on the Taylor expansion of the quasi Log-Likelihood function, is used in selection of the best subsets of coefficients, utilized in turn for further separation. The performance of the proposed method is assessed by separation of noise-free and noisy data. Experiments with simulated and real signals and images demonstrate significant improvement of separation quality over previously reported results.
The concern of the blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. It was discovered recently, that use of sparsity of source representation in some signal dictionary dramatically improves the quality of separation. In this work we use the property of multiscale transforms, such as wavelet or wavelet packets, to decompose signals into sets of local features with various degrees of sparsity. We use this intrinsic property for selecting the best (most sparse) subsets of features for further separation. Experiments with simulated signals, musical sounds and images demonstrate significant improvement of separation quality.
The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.