This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The security of most digital signature schemes relies on the assumed computational difficulty of solving certain mathematical problems. However, reports in the media have shown that certain implementations of such signature schemes are vulnerable to algorithmic breakthroughs and emerging quantum processing technologies. Indeed, even without quantum processors, the possibility remains that classical algorithmic breakthroughs will render these schemes insecure.
There is ongoing research into information-theoretically secure signature schemes, where the security is guaranteed against an attacker with arbitrary computational resources. One such approach is quantum digital signatures. Quantum signature schemes can be made information-theoretically secure based on the laws of quantum mechanics while comparable classical protocols require additional resources such as anonymous broadcast and/or a trusted authority.
Previously, most early demonstrations of quantum digital signatures required dedicated single-purpose hardware and operated over restricted ranges in a laboratory environment. Here, for the first time, we present a demonstration of quantum digital signatures conducted over several kilometers of installed optical fiber. The system reported here operates at a higher signature generation rate than previous fiber systems.
Development of a cryogenic GaAs AC-coupled CTIA readout for far-infrared and submillimeter detectors
View contact details
No SPIE Account? Create one