Light carries energy and momentum, laying the physical foundation of optical manipulation that has facilitated advances in myriad scientific disciplines, ranging from biochemistry and robotics to quantum physics. Utilizing the momentum of light, optical tweezers have exemplified elegant light–matter interactions in which mechanical and optical momenta can be interchanged, whose effects are the most pronounced on micro and nano objects in fluid suspensions. In solid domains, the same momentum transfer becomes futile in the face of dramatically increased adhesion force. Effective implementation of optical manipulation should thereupon switch to the “energy” channel by involving auxiliary physical fields, which also coincides with the irresistible trend of enriching actuation mechanisms beyond sole reliance on light-momentum-based optical force. From this perspective, this review covers the developments of optical manipulation in schemes of both momentum and energy transfer, and we have correspondingly selected representative techniques to present. Theoretical analyses are provided at the beginning of this review followed by experimental embodiments, with special emphasis on the contrast between mechanisms and the practical realization of optical manipulation in fluid and solid domains.
Manipulating motion of microobjects with light is indispensable in various technologies. On solid interfaces, its realizations, however, are hampered by surface friction. To resolve this difficulty, light-induced elastic waves have been recently proposed to drive microobjects against friction. Despite its expected applicability for arbitrary optical-absorptive objects, the new principle has only been tested with microsized gold plates. Herein, we validate this principle using a new material and report directional and continuous movements of a two-dimensional topological insulator (Sb2Te3) plate on an untreated microfiber surface driven by nanosecond laser pulses. The motion performance of the Sb2Te3 plate is characterized by a scanning electron microscope. We observe that the motion velocity can be controlled by tuning the average power of laser pulses. Further, by intentionally increasing the pulse repetition rate and exploiting the low thermal conductivity of Sb2Te3, we examine the thermal effects on actuation and reveal the motion instability induced by formations of microbumps on Sb2Te3 surfaces due to the Marangoni effects. Moreover, as the formed microbumps are heated to viscoelasticity states, liquid-like motion featuring asymmetry in contact angles is observed and characterized, which expands the scope of light-induced actuation of microobjects.
We introduce a new class of on-chip optical tweezers with high trapping efficiency, compact footprint, and broadband operation by integrating free-form micro-reflectors and micro-lenses to the facets of waveguides to generate the strong three-dimensional optical field gradient for optical trapping. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably small trapping threshold power, and the refractive tweezers are handy for multi-particle trapping and inter-particle interaction analysis. This new class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.