Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase
expected within the next 10 years. Data Transfer on such scale would have to recruit optical
communication technology and inspire new designs of light sources, modulators, and photodetectors. An
ideal optical modulator will require high modulation speed, small device footprint and large operating
bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound
semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One
of the key limitations for using silicon as modulator material is its weak refractive index change, which
limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches
such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are
highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality
wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive,
which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the
active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we
induced changes in the absorption coefficient of graphene at communication wavelength and achieve a
modulation depth above 3 dB. This integrated device also has the potential of working at high speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.