As millimeter-wave cosmology experiments refine their optical chains, precisely characterizing their optical materials under cryogenic conditions becomes increasingly important. For instance, as the aperture sizes and bandwidths of millimeter-wave receivers increase, the design of antireflection coatings becomes progressively more constrained by an accurate measure of material optical properties in order to achieve forecasted performance. Likewise, understanding dielectric and scattering losses is relevant to photon noise modeling in presently-deploying receivers such as BICEP Array and especially to future experiments such as CMB-S4. Additionally, the design of refractive elements such as lenses necessitates an accurate measure of the refractive index. High quality factor Fabry–Pérot open resonant cavities provide an elegant means for measuring these optical properties. Employing a hemispherical resonator that is compatible with a quick-turnaround 4 Kelvin cryostat, we can measure the dielectric and scattering losses of low-loss materials at both ambient and cryogenic temperatures. We review the design, characterization, and metrological applications of quasioptical cavities commissioned for measuring the dielectric materials in the BICEP3 (95 GHz) and BICEP Array mid-frequency (150 GHz) optics. We also discuss the efforts to improve the finesse of said cavities, for better resolution of degenerate higher order modes, which can provide stronger constraints on cavity parameters and sample material thickness.
The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers.
Measurements of B-mode polarization in the cosmic microwave background (CMB) sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies.
BICEP Array (BA) is the latest generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, BA will consist of four small-aperture receivers, spanning six different frequency bands. The BA4 receiver is designed to characterize Galactic dust at 220/270 GHz. This receiver is currently undergoing commissioning at Stanford and is scheduled to deploy to the South Pole during the 2024-2025 austral summer. Here, we will provide an overview of this high frequency receiver, discussing the integration status and test results as it is being commissioned.
Future millimeter wavelength experiments aim to both increase aperture diameters and broaden bandwidths to increase the sensitivity of the receivers. These changes produce a challenging anti-reflection (AR) design problem for refracting and transmissive optics. The higher frequency plastic optics require consistently thin polymer coats across a wide area, while wider bandwidths require multilayer designs. We present multilayer AR coats for plastic optics of the high frequency BICEP Array receiver (200-300 GHz) utilizing an expanded polytetrafluoroethylene (ePTFE) membrane, layered and compressively heat-bonded to itself. This process allows for a range of densities (from 0.3g/cc to 1g/cc) and thicknesses (>0.05mm) over a wide radius (33cm), opening the parameter space of potential AR coats in interesting directions. The layered ePTFE membrane has been combined with other polymer layers to produce band average reflections between 0.2% and 0.6% on high density polyethylene and a thin high modulus polyethylene window, respectively.
New experiments that target the B-mode polarization signals in the Cosmic Microwave Background require more sensitivity, more detectors, and thus larger-aperture millimeter-wavelength telescopes, than previous experiments. These larger apertures require ever larger vacuum windows to house cryogenic optics. Scaling up conventional vacuum windows, such as those made of High Density Polyethylene (HDPE), require a corresponding increase in the thickness of the window material to handle the extra force from the atmospheric pressure. Thicker windows cause more transmission loss at ambient temperatures, increasing optical loading and decreasing sensitivity. We have developed the use of woven High Modulus Polyethylene (HMPE), a material 100 times stronger than HDPE, to manufacture stronger, thinner windows using a pressurized hot lamination process. We discuss the development of a specialty autoclave for generating thin laminate vacuum windows and the optical and mechanical characterization of full scale science grade windows, with the goal of developing a new window suitable for BICEP Array cryostats and for future CMB applications.
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon-noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.
The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than approximately 800 functioning detector pairs of the BICEP3 experiment, out of a total of approximately 1000. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of approximately 0.5° . After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence.
Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments.
The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.
TolTEC is a three-band imaging polarimeter for the Large Millimeter Telescope. Simultaneously observing with passbands at 1.1mm, 1.4mm and 2.0mm, TolTEC has diffraction-limited beams with FWHM of 5, 7, and 11 arcsec, respectively. Over the coming decade, TolTEC will perform a combination of PI-led and Open-access Legacy Survey projects. Herein we provide an overview of the instrument and give the first quantitative measures of its performance in the lab prior to shipping to the telescope in 2021.
A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
The mm-wavelength sky reveals the initial phase of structure formation, at all spatial scales, over the entire observable history of the Universe. Over the past 20 years, advances in mm-wavelength detectors and camera systems have allowed the field to take enormous strides forward – particularly in the study of the Cosmic Microwave Background – but limitations in mapping speeds, sensitivity and resolution have plagued studies of astrophysical phenomena. In fact, limitations due to inherent biases in the ground-based mm-wavelength surveys conducted over the last 2 decades continue to motivate the need for deeper and wider-area maps made with increased angular resolution. TolTEC is a new camera that will fill the focal plane of the 50m diameter Large Millimeter Telescope (LMT) and provide simultaneous, polarization-sensitive imaging at 2.0, 1.4, and 1.1mm wavelengths. The instrument, now under construction, is a cryogenically cooled receiver housing three separate kilo-pixel arrays of Kinetic Inductance Detectors (KIDs) that are coupled to the telescope through a series of silicon lenses and dichroic splitters. TolTEC will be installed and commissioned on the LMT in early 2019 where it will become both a facility instrument and also perform a series of 100 hour “Legacy Surveys” whose data will be publicly available. The initial four surveys in this series: the Clouds to Cores Legacy Survey, the Fields in Filaments Legacy Survey, the Ultra-Deep Legacy Survey and the Large Scale Structure Survey are currently being defined in public working groups of astronomers coordinated by TolTEC Science Team members. Data collection for these surveys will begin in late 2019 with data releases planned for late 2020 and 2021. Herein we describe the instrument concept, provide performance data for key subsystems, and provide an overview of the science, schedule and plans for the initial four Legacy Survey concepts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.