Energy sensitive and photon counting detectors can provide improved tissue visualization and material quantification capabilities in Cone Beam Computed Tomography (CBCT) systems. However, their implementation in CBCT systems is more challenging, which is in part due to high fluence of scattered X-rays in wide cone angle CBCT geometry. Specifically, high scatter contamination in lower energy spectrum challenges reconstruction of high fidelity CBCT images by using lower energy X-rays. To address this problem, we investigated a robust scatter rejection with 2D antiscatter grids in a benchtop photon counting and compact CBCT system. The benchtop system employs a 35 cm wide CdTe photon counting detector with two energy thresholds. To reject scatter, a dedicated 2D antiscatter grid (2D grid) prototype made from tungsten was developed and mounted directly on the detector. To correct residual scatter not stopped by the 2D grid, a measurement-based scatter correction method, referred to as Grid-based Scatter Sampling (GSS), was utilized. Without 2D grid, scatter to primary ratio (SPR) reached 2.3 in the 15-40 keV energy bin. SPR was factor of 3 higher in the lowest energy bin when compared to the highest energy bin (90-120 keV). With the 2D grid, SPR was reduced below 0.14, and SPR values were more homogenous across the energy spectrum. CT number nonuniformity was factor of 3 lower in both low and high energy bin CBCT reconstructions. Improvement in contrast to noise ratio and contrast was more pronounced in the low energy bin CBCT images. This work indicates that 2D grids can significantly reduce spectral contamination caused by scatter in photon counting compact CBCT, and potentially enable higher fidelity CBCT image reconstructions.
Simultaneous use of kilovoltage (kV) and megavoltage (MV) beams has numerous potential applications in cone beam computed tomography (CBCT)-guided radiotherapy, such as fast MV+kV CBCT for single breath-hold scan, tumor localization with kV CBCT imaging during MV therapy delivery, and metal artifact suppression. However, the introduction of MV beams results in a large MV-cross scatter fluence incident on the kV Flat Panel Detector (FPD), and thus, deteriorating the low contrast visualization and Hounsfield Unit (HU) accuracy. In this work, we introduced a novel and robust method for reducing the effects of MV cross scatter. First, we implemented a 2D antiscatter grid atop the detector which rejects a large section of MV cross scatter. This hardware-based approach, while effective, allows a fraction of MV cross scatter to be transmitted to the FPD, resulting in artifacts and degraded HU accuracy in CBCT images. We thus introduced a data correction step, which aimed to estimate and correct the remaining MV cross scatter. This approach, referred to as Grid-Based Scatter Sampling, utilized 2D antiscatter grid itself to measure and correct remaining MV cross scatter in projections. We investigated the performance of the proposed approach in experiments by simultaneously acquiring kV CBCT and delivering MV beams with a clinical linac. The results show that the proposed method can substantially reduce HU inaccuracy and increase contrast-to-noise ratio (CNR). Our method does not require synchronization of kV and MV beam pulses, reduction of kV frame acquisition rate, or MV dose rate, and therefore, it is more practical to implement in radiation therapy clinical setting.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.