We demonstrate two highly coherent tunable high power laser concepts, based on a III-V semiconductor VECSEL technology, operating in the 1μm wavelength range. We report experimentally and theoretically the existence of deterministic dynamics of a coherent semiconductor laser field, with a route to robust single-frequency operation exhibiting broad nonlinear frequency pulling far above the thermally-assisted conventional tuning range. Thanks to a complementary design, we demonstrate an inhibited laser state exhibiting high power, high spatial and temporal coherence under ultralow light matter interaction, overcoming fundamental and technical limitations of common on the shelf laser technology, like quantum, electronic and thermal noise, as well as thermal lensing induced wave aberration.
THz photonics-based sources are attractive as they offer room-temperature solutions that rely on mature photonics technology and provide broadband tunability and large modulation bandwidth to address specific THz applications such as high-data-rate communications or spectroscopy. We will present an overview of our recent results on coherent and structured light emitted from III-V semiconductor lasers and we will focus on THz generation based on these original near-infrared lasers operating at 1064 nm. Vertical external-cavity surface-emitting lasers that exploit parity symmetry breaking together with integrated meta-surfaces can generate unconventional light states such as vortex light, spatially modeless laser, transverse multiplexing, non-linear structured light... Coherent THz emission has been obtained from a dual-mode laser, that operates simultaneously on two Laguerre-Gauss transverse modes, using either uni-traveling-carrier photodiodes and plasmonic photo-conductive antennas. We will discuss the ongoing work towards multiplex structured coherent photonic sources that offer high potential for powerful THz emission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.