Inhomogeneous and three-dimensional strain engineering in two dimensional materials opens up new avenues to straintronic devices for control strain sensitive photonic properties. Here we present a method to tune strain by wrinkling monolayer WSe2 attached to a 15 nm thick ALD support layer and compressing the heterostructure on a soft substrate. The ALD film stiffens the 2D material, enabling optically resolvable micron scale wrinkling rather than nanometer scale crumpling and folding. Using photoluminescence spectroscopy, we show the wrinkling introduces periodic modulation of the bandgap by 47 meV, corresponding with strain modulation from +0.67% tensile strain at the wrinkle crest to -0.31% compressive strain at the trough. Moreover, we show that cycling the substrate strain mechanically reconfigures the magnitude and direction of wrinkling and resulting band tuning. These results pave the way towards stretchable multifuctional devices based on strained 2D materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.