Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model. The result of segmentation with a four-neighbor Markov Random Field model applied to multi-spectral MRI (5 images including one T1-weighted image, one Proton Density image and three T2-weighted images) in different noise levels is compared to the segmentation results of standard k-means and FCM algorithms. This comparison shows that the proposed method outperforms previous methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.